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a b s t r a c t 

Task allocation among a network of heterogeneous resource-constrained Unmanned Aerial Vehicles 

(UAVs) in an unknown and remote environment is still a challenging problem noting the limited available 

information about highly dynamic environment, lack of continuous and reliable communication network, 

and the limited energy and resources available at the UAVs. One solution for this such allocation problem 

is to form several efficient coalitions of the UAVs, where a complex task is assigned to a group of agents 

(i.e., a coalition) carrying the required resources/capabilities to perform this task. In this paper, inspired 

by Quantum Evolutionary Algorithms, we propose a leader-follower coalition formation algorithm in a 

large-scale UAV network to form the best possible coalitions of agents to accomplish the detected tasks 

in an unknown environment. Three main objectives have been considered in this coalition formation: (i) 

minimizing resource consumption in completing the assigned tasks on time; (ii) enhancing the reliability 

of the coalitions; and (iii) considering the most trustworthy UAVs amid the self-interested UAVs in form- 

ing the coalitions. The simulation results demonstrate the superior performances of the proposed model 

in different scenarios with large number of UAVs compared to existing coalition formation algorithms 

such as merge-and-split and a famous multi-objective genetic algorithm called NSGA-II. 1 2 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

A single agent system is often unable to perform complex

tasks, considering the limited individual capabilities of such an

agent. Therefore, cooperative multi-agent systems (MASs) can of-

fer a practical solution to such problems by ensembling a comple-

mentary set of different capabilities/resources from several agents.

However, one of the key challenges in such cooperative MASs is

forming optimal sub-groups of agents (i.e., coalition formation) in

order to efficiently perform the existing tasks, especially in a dis-

tributed case where no central controller is available. That being

said, the coalition formation problem concerns how different coali-

tions can be formed considering the tasks’ requirements and the

agents’ capabilities, so much so that the collective goals of the
tasks are reached in the most effective manner. In the case of 
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ulti-UAV task allocation problem, a task can be done by a group

f UAVs, resulting in a better performance. 

A considerable amount of research has been recently carried

ut in solving coalition formation problems. This has spawned sev-

ral classic methods to form stable coalitions that follow common

tability concepts based on Core, Shapley value, Bargaining Set,

nd Kernel [1–3] . However, achieving such stability concepts of-

en mandates high computational complexity. Coalition formation

roblem can also be considered as a class of games in game the-

ry, where the agents cooperate with each other to form different

eams with maximum payoffs [4–6] . In addition, many researchers

ave attempted to deal with the problem of coalition formation

n multi-agent systems by applying various approaches including

enetic algorithms [7] , dynamic programming methods [8] , graph

heory [9,10] , iterative processes [11] , cooperative Multi-Agent Re-

nforcement Learning (MARL) [12–15] , and temporal-spatial ab-

traction MARL [16–20] . 

In the majority of the previously reported works, a central unit

ith information on mission status and the agents’ capabilities

s required [21,22] . Such centralized methods are highly vulnera-

le to the failure of the central controller unit and also cannot

asily scale up to large-scale networks. On the other hand, the

ecentralized task allocation approaches for heterogeneous UAV
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etworks involve a high level of message passing among the agents

o converge to a solution [23–26] . In this paper, we study the prob-

em of task allocation among a large-scale heterogeneous resource-

onstraint UAV network in an unknown and dynamic environment

here no prior knowledge is available about targets or Point of

nterests (PoIs) and therefore UAVs need to gain the knowledge

f environment dynamically [27,28] . We propose a leader-follower

oalition formation model for task allocation, in which the UAVs

ivide the tasks among themselves when there is no central con-

roller in the network with the knowledge of targets’ locations and

equired resources as well as knowledge of the UAVs’ location and

vailable resources. In this model, the UAVs are first in the search

tate, and then each UAV that detects a target can act as a leader

o form a coalition to complete the tasks associated to this target.

o the best of our knowledge, there is no previous work to provide

n on-flight task allocation mechanism amongst a large number

f heterogeneous UAVs when the location and type of targets are

ot known prior to flight. The proposed leader-follower approach is

 decentralized and localized algorithm meaning that each leader

evotes itself to manage its detected target by recruiting a group of

AVs in a certain distance from the target that carry a subset of re-

uired resources to complete the encountered task. Therefore, the

roposed method only involves massage passing among the UAVs

n a close proximity of the detected target. 

Furthermore, the majority of the previously reported studies

ave mainly focused on a single factor in forming the optimal

oalitions (i.e., reducing the costs of coalitions) and only a few of

hem have focused upon multiple objectives. Therefore, in this pa-

er, we propose a multiple objective optimization to account for

he following criteria in forming the optimal coalitions: (i) mini-

izing the cost associated with consumption of resources of the

oalitions formed; (ii) maximizing the reliability of the formed

oalitions; and (iii) to select the most trustworthy of UAVs among

he available self-interested UAVs in the network. Reliability is a

ritical factor in coalition formation to perform a task successfully

here all UAVs need to work perfectly during the mission. Hence,

t is desired to maximize the coalition reliability by involving the

ost reliable UAVs in the coalition. In other words, as the leaders

ntend to carry out their assigned tasks with the least probability

f failure in the mission, they prefer to include the UAVs with the

aximum operational probabilities during the mission. Therefore,

he UAVs with lower reliability have a lower chance to be selected

n the mission. To the best of our knowledge, this paper is the first

ork that incorporates the reliability as an objective in multi-UAV

oalition formation problem. 

Finding the solution of such a multi-objective coalition forma-

ion problem involves an NP-hard problem. Many approaches such

s mixed integer linear programming [29,30] and dynamic net-

ork flow optimization [31] have been utilized to provide an ex-

ct solution to this problem. However, since these approaches seek

uch a solution, applying them to a large-scale problem is com-

utationally taxing. More recently, metaheuristic algorithms such

s Particle Swarm Optimization (PSO) [32] , Ant Colony Optimiza-

ion [33] , Genetic Algorithms (GAs) [34] , and Simulated Annealing

SA) [35] have offered reasonable solutions in efficient times for

 variation of multi-objective optimization problems. Inspired by

he success of evolutionary approaches, this paper presents a novel

eader-follower-based coalition formation algorithm using a quan-

um evolutionary approach whilst considering the aforementioned

bjectives in addressing the problem. 

Potential applications of the proposed method are search and

escue, humanitarian relief, and public safety operations in un-

nown remote environments or military operations in remote

elds. In such environments, it can be safely assumed that ground

tation does not have prior information about the PoIs and their

ositions. To evaluate the performance of the proposed method
n such an unknown environment, several scenarios with different

umbers of tasks ranging from 4 to 24, and a heterogeneous net-

ork of UAVs consists of a different number of UAVs ranging from

 to 124 were simulated. 

The rest of the paper is organized as follows: Section 2 presents

he problem statement and the formulation of the multi-UAV

oalition formation as a multi-objective optimization problem.

ection 3 describes the proposed coalition formation algorithm.

ection 4 reports the simulation results followed by concluding re-

arks in Section 5 . 

. Problem definition 

In this section, the decentralized task allocation problem in

 network of autonomous UAVs by forming optimum coalitions

s formulated. The possibility of selfish behavior of these self-

nterested UAVs are accounted for and reputation guidelines in

electing the most reliable of UAVs to participate in the formed

oalitions are also defined. It is vital to note that the proposed

lgorithm considers minimizing the cost of coalition formation in

erms of overspending the resources on particular tasks as well as

nhancing the reliability of the formed coalitions as paramount. 

A heterogeneous network of N UAVs U = { u 1 , u 2 , . . . , u N } , where

ach UAV, u i can potentially carry a different set of resources com-

ared to other ones is considered. R u i = { r 1 u i 
, r 2 u i 

, . . . , r N r u i 
} denotes

he set of resources available at UAV, u i where N r is the number

f possible resources in the network. It is also assumed that there

xists n tasks in the environment T = { T 1 , T 2 , . . . , T n } . Each task, T i 
equires a certain amount of resources to be completed. The vector

f required resources for task i is defined as follows: 

i = { τ i 
1 , τ

i 
2 , τ

i 
3 , . . . , τ

i 
N r 

} , (1)

here τ i 
j 

is the required amount of resource j for task i . It is as-

umed that each task is associated to one PoI (target) and the

oIs can be located in different positions with a diverse set of re-

ource requirements. All UAVs are able to search the unknown en-

ironment for new PoIs. The tasks are carried out by the formed

oalitions S = { S 1 , S 2 , . . . , S m 

} , where each coalition S i is respon-

ible for one task. A large search space where the PoIs are dis-

ributed far apart from each other are considered. It can there-

ore be assumed that the formed coalitions are sufficiently far

rom one another that each UAV can only be a member of a sin-

le coalition, i.e., S k ∩ S l = ∅ , ∀ S k , S l ∈ S . This also means that the

oalitions are non-overlapping. The capability of each coalition S i 
o complete its encountered task is defined as the value of coali-

ion v (S i ) , (v (S i ) ∈ R ) as described in the next section. Moreover,

ost ( S i , T i ) is defined as the cost of coalition S i in performing task

 i . The cost function for coalition S i captures the cost imposed on

ll UAV members of this coalition (i.e., 
∑ 

u j ∈ S i cost(S i , u j )) in which

heir resources have been shared to accomplish task T i . 

Another key contribution of the proposed model is consider-

ng the reliability factor in forming the optimal coalitions. While

n the majority of existing techniques, it is assumed that the UAV

embers of formed coalitions are perfectly operational during the

ission lifetime, this is obviously not a realistic assumption as the

AVs’ operation can be interrupted for several reasons (e.g., ex-

austion of battery or a particular resource). A practical case is

onsidered where the UAVs are assumed to be either fully opera-

ional or one of their capabilities (e.g., resources) are bound to fail

uring the mission. Such failures in various capabilities are consid-

red to be statistically independent. Furthermore, involving differ-

nt types of UAVs in a coalition may result in different execution

imes of accomplishing the sub-tasks as the UAVs have a different

et of capabilities. For instance, a given UAV may be able to fulfill

ts duty in a shorter time than another. The cost and reliability of

 coalition indeed depend on these execution times where lower
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Table 1 

A simple example of failure rate and execution 

time. 

UAV i =1 UAV i =2 

Failure rate ( λij ) 0.0 0 0 05 0.0 0 04 

Execution time ( k ij ) 10 20 
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execution times are favored for incurring lower execution costs. In

the next section, we define and formulate these factors (i.e., cost,

reliability and reputation). 

2.1. Definition of cost and reliability of the formed coalitions 

A set of UAVs in the form of a coalition collaborate with one

another to carry out the encountered task. Participation in such

coalitions involves a cost of sharing and consuming the resources

for the member UAVs. For a given task T k with the required re-

sources τ k = { τ k 
1 
, τ k 

2 
, τ k 

3 
, . . . , τ k 

N r 
} , where the amount of resource i

for task k is denoted by τ k 
i 

≥ 0 , the execution cost of consuming

resource j of UAV i is denoted by e ij , where e i j = μ j r 
j 
u i 

∀ i, j and

μj is a constant coefficient in order to convert the amount of re-

source j to a time dependent value to have the same unit as the

execution time. Thus, the cost of coalition S k , C ( S k ) can be calcu-

lated as follows: 

(S k ) = 

N k ∑ 

i =1 

N r ∑ 

j=1 

e i j k i j + a i j , (2)

where k ij is the execution time if UAV i carrying resource j is in-

volved in task k , and a ij is the travel time of UAV i to task j . 

Possibility of potential defects in the UAVs’ resources that may

result in performance failure of these UAVs during the mission is

also accounted for. Considering so, the reliability of coalition S k for

a give task T k , denoted by R ( S k ) is defined as follows: 

R (S k ) = 

N k ∏ 

i =1 

e −
∑ N r 

j=1 
λi j k i j , (3)

where λij is the failure rate of resource j of UAV i . For sim-

plicity, log e transfer of R ( S k ) function as follows, ln (R (S k )) =
−∑ N k 

i =1 

∑ N r 
j=1 

λi j k i j is used. For instance, suppose there are N k = 2

UAVs (e.g, each owns just one resource) to accomplish task k .

Table 1 presents the failure rates and execution times of involved

UAVs in the task k . Considering the Eq. (3 ), the reliability of coali-

tion S k for task k is computed as follow: 

R (S k ) = e −10 ×0 . 0 0 0 05 × e −20 ×0 . 0 0 04 

ln (R (S k )) = −10 × 0 . 0 0 0 05 − 20 × 0 . 0 0 04 = −0 . 0 085 

The formulation of the reliability has been inspired by works

reported in [36,37] . Interested readers are referred to these papers

for more details on the probability that a system can accomplish a

particular task without failure. 

2.2. Definition of reputation factor 

Similar to other cognitive agents, the UAVs are expected to

be self-interested in the sense that they prefer to save their lim-

ited resources, and may act selfishly by not consuming enough re-

sources during the mission. To monitor the cooperative behavior of

these UAVs, an accumulative cooperative reputation related to the

amount of resources that each UAV shares during the mission is

defined [38–41] . 

In common reputation-based mechanisms, there exists a cen-

tral or several audit units in the network with the role of moni-

toring all the agents’ behavior over the course of time to measure
heir level of trust and then broadcast this information or share

t with other agents on an demand basis [42,43] . However, such

pproach is not appropriate for distributed systems. On the other

and, if the agents are allowed to self-report their reputations as

mplemented in many cooperative multi-agent systems, the sys-

em would be at high risk of dealing with several false reputation

eports by the malicious or selfish agents [44–46] . To avoid such

alse reputation reports, here we propose a reputation monitoring

echanism in which the leader UAVs measure the contributions

f the follower UAVs in terms of the amount of resources they in-

ested in that specific task after the completion of coalition’s mis-

ion and they share that with other leaders when new coalitions

re being formed. 

We define two kind of reputations in this study. The first-hand

eputation, which is calculated based of the leader knowledge of

he follower, and the second-hand reputation, which is computed

ased the knowledge of other leaders in the neighborhood. The

econd-hand reputation is used when the reputation history of a

ollower is not available to a specific leader. During each mission

 (i.e., accomplishing an assigned task), if the leader has a history

f direct interaction with the follower (here, UAV i ), the first-hand

ooperative reputation of each it, ρ i is updated as follows: 

n 
i = 

{ ρn −1 
i 

+ �ρn 
i 
, ∃ k | u i ∈ S k 

ρn −1 
i 

, otherwise 
(4)

here n is a discrete factor, representing the index of a mission

o that H n can be the elapsed time from the beginning of the first

ission till now. Also, �ρn 
i 

is the amount of contribution of UAV

 to coalition S k in terms of sharing resources to carry out the as-

igned task k and can be defined as follows: 

ρn 
i = 

ϒk ∑ 

m ∈ S k f n m 

f n i , (5)

here ϒk is the sum of the resource requirements of task T k de-

oting as ϒk = 

∑ N r 
j=1 

τ k 
j 

and f n 
i 

is the sum of the resource con-

ributions of UAV i after mission is completed, defined as f n 
i 

=
 N r 
j=1 

r 
jn 
u i 

τ k 
j 

, where r 
jn 
u i 

is the amount of resource j in the time step n .

n other words, the leaders observe the amount of resources that

AV i contributed to the mission when the mission is completed

i.e., r u i ) and then update the corresponding reputation of the fol-

owers after finishing each mission. Here, the coalition reputation

f all involved UAVs in the coalition S k is computed as follows: 

 (S k ) = 

N k ∑ 

i =1 

ρn 
i (6)

f there does not exist a prior record of interactions between a

eader and a follower, then the leader can inquire the follower’s

eputation from its neighbor (i.e., adjacent leaders). In this cases,

he second-hand reputation is defined as: 

n 
i = 

∑ 

l∈ L ρ
n 
il 

| L | , (7)

here L is the set of leaders in proximity of the leader assigned to

he task k . 

.3. Formulation of multi-objective optimization problem 

To consider all aforementioned optimization criteria including

educing the coalition cost, and increasing the reliability, and rep-

tation of the formed coalitions, a Multi-Objective Optimization

roblem (MOOP) as a weighted-sum of three objectives is defined.

he multi-objective optimization and its required constraints are

efined as follows. 

in O (S ) = C(S ) − η1 ln R (S ) − η2 P (S ) (8)
k k k k 
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Table 2 

Notations. 

a ij Travel time of UAV i to task j . 

e ij Execution cost of involving resource j of UAV i in a coalition. It is computed per unit time. 

k ij Execution time of involving resource j of UAV i in a coalition. It depends on the task and capability of the UAV. 

λij Failure rate of involving resource j of UAV i in a coalition. 

ρi Credit of UAV i . 

N k Number of UAVs in coalition k . 

N r Number of network resources. 

N Number of network UAVs. 
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N k ∑ 

i =1 

e i j ≥ τ k 
j ∀ j = 1 , 2 , 3 , . . . , N r , (9)

here η1 and η2 are weighting parameters to assign the desired

mportance to each objective and scale them to be in comparative

anges. Constraint (9) refers to the requirement to secure enough

esources in the formed coalition to complete the encountered task

 k . In Table 2 , a summary of the notations used throughout this

aper is presented. 

. Proposed method 

The objective function described in Section 2.3 is a NP-hard

roblem. Standard approaches such as dynamic programming and

xact algorithms involve computational complexity of O ( n 2 ) that

ould be intractable in large-scale networks. Hence, evolutionary

lgorithms such as genetic algorithm can be considered as po-

ential options to find feasible solutions of this problem. In this

aper, we propose a coalition formation algorithm based on a

ersion of genetic algorithm called Quantum-Inspired Genetic Al-

orithm (QIGA) to find the solution of the multi-objective problem

ormulated in (8) . 

.1. Review of quantum-Inspired genetic algorithm (QIGA) 

The idea behind QIG algorithms is to take advantage of both GA

nd quantum computing mechanisms [36] . In quantum computa-

ion, the data representation is based on qubit that is the smallest

nformation unit. A qubit is considered as a superposition of two

ifferent states |0 〉 and |1 〉 that can be denoted as: 

 ψ〉 = α| 0 〉 + β| 1 〉 , (10)

here α and β are complex numbers such that | α| 2 + | β| 2 = 1 .

 α| 2 and | β| 2 are the probability of amplitudes where the qubit can

e at states |0 〉 and |1 〉 , respectively. With m qubits, the model can

epresent 2 m independent states. However, when the value of the

ubit is measured, it leads to a single state of the quantum state

i.e., |0 〉 or |1 〉 ). Similar to a standard genetic algorithm, a chromo-

ome’s representation is defined as a string of m information units.

hus, a chromosome can be defined as a string of m qubits as: 

 

(
α0 

β0 

)
, 

(
α1 

β1 

)
, 

(
α2 

β2 

)
, . . . , 

(
αm −1 

βm −1 

)} 

, (11)

here each pair (αi , βi ) , i = 1 , 2 , 3 , . . . , m − 1 denotes a gene of the

hromosome. 

To evaluate a quantum chromosome, a transfer function called

easure is applied to convert the quantum states to a classical

hromosome representation. For example, each pair ( αi , β i ) is con-

erted to a value c i ∈ {0, 1} so that the m -qubit chromosome may

esult in a binary string { c 1 , c 2 , c 3 , . . . , c m 

} . More specifically, each

air becomes 0 or 1 using the corresponding qubit probabilities

 αi | 
2 and | β i | 

2 . To perform this conversion, we use the measure

unction defined as follow: 
function measure ( α) 

set r to a random number between 0 and 1; 

if r > | α| 2 then 

return 0; 

else 

return 1; 

end if 

end function 

The superposition property in the quantum qubit makes a

uantum chromosome encompasses exponentially more data com-

ared to a classical chromosome of the same size (similar to

hat is used in original genetic algorithms). Therefore, applying an

peration to the classical chromosome results in a consequence.

hereas, applying an operation to the quantum chromosome re-

ults in a superposition of all possible consequences [47] . In other

ords, in a classical population each chromosome (i.e, individ-

al) can only represent one potential solution for the problem.

owever, in a quantum population, each chromosome is a super-

osition of many potential solutions. As we considered, a large

umber of UAVs are examined in our assumptions, therefore the

roposed QIGA helps scanning a larger set of possible solutions in

ach round and the algorithm converges to better results. The ro-

ation operator in QIGA is similar to the selection operation in the

lassical genetic algorithms. In classical GA, the selection operator

alues the individuals with better fitness so that the individuals

ith lower fitness would have less chance to be selected. However,

n QIGA, the rotation operator attempts to push all individuals to-

ard the best individual. Because of this feature, the population

onverges to the better states promptly [48] . 

Each binary string is a possible solution which is evaluated via

 problem dependent fitness function. In the following section, the

roposed fitness function is described. 

.2. Fitness function 

The fitness function or evaluation function determines how to

t a solution with respect to the constrained optimization prob-

em. To build the fitness function, the negative sign of the objective

unction O ( S k ), defined in (8) , is used. In addition, as the solutions

hich meet all of the constraints get higher fitness value, the solu-

ions which violate some of the constrains should achieve a lower

bjective value from the fitness function. To prevent potential vi-

lations, a penalty function technique that penalizes the solutions

ccording to amount of constraints’ mismatches is applied. Consid-

ring these facts, the fitness function is proposed as: 

 (S k ) = −(O (S k ) + g(S k )) , (12)

here g ( S k ) is the penalty function such that if there is no viola-

ion, its value will be zero, and positive otherwise. g ( S k ) is defined

s: 

(S k ) = γ ×
N r ∑ 

i =1 

max 

( 

0 , τ k 
j −

N s ∑ 

i =1 

e i j 

) 

, (13)

here γ is the penalty coefficient that controls the weight of the

mount of constraints violated. 
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Fig. 1. An example of the proposed leader-follower coalition formation process. 
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Evolutionary strategies (e.g., crossover and mutation operations)

are often considered in GA algorithms to improve their perfor-

mance. However, as stated in [36] , applying the crossover and mu-

tation operators do not significantly improve the performance of

the QIGA. Therefore, in the QIGAs, usually a qubit rotation gates

operation is used. Qubit ( αi , β i ) of the m -qubit chromosome is up-

dated according to the rotation gates in order to get more or less

probabilities to states |0 〉 and |1 〉 . Therefore, at each time step t ,

the update of qubit is performed based on the following rotation

gate matrix L ( θ i ): 

L (θi ) = 

(
cos (θi ) −sin (θi ) 
sin (θi ) cos (θi ) 

)
;
(

αt 
i 

βt 
i 

)
= L (θi ) 

(
αt−1 

i 

βt−1 
i 

)
, (14)

where θ i is the amount of angle rotation of qubit gate i .

Algorithm 1 presents the pseudo-code for QIGA as described in

[36] . 

Algorithm 1 Quantum-Inspired Genetic Algorithm. 

1: t ← 0 

2: Initialize Q(t) as the population 

3: Make P (t) by measuring Q(t) 

4: Evaluate P (t) 

5: Store the best solution b among P (t) 

6: repeat 

7: t ← t + 1 

8: Make P (t) by measuring Q(t − 1) 

9: Evaluate P (t) 

10: Update Q(t) using quantum gates L (t) 

11: Store the best solution b among P (t) 

12: until the termination-condition 

3.3. Multi-UAV coalition formation 

Fig. 1 illustrates an example of the proposed coalition forma-

tion process where there are two targets (POIs) in the environ-

ment. To establish a multi-UAV coalition, a leader-follower coali-

tion formation method is followed. Initially, the UAVs are uniformly
istributed in a search space to look for the PoIs. When a PoI is de-

ected by a UAV, this UAV computes the resource requirements of

he detected PoI and serves as a leader to form an optimal coali-

ion. After calculating the required resources, the leader UAV calls

ther UAVs within a certain distance to join it in forming a coali-

ion. Then, the UAVs with at least one of the required resources

an respond to this call by reporting the amount of resources that

hey are able to contribute to help accomplish the task. It is also

ssumed that the UAVs are self-interested, meaning that if a UAV

eceives multiple requests, it will consider joining the coalition

hich offers the highest benefit. The UAV i, u i measures the value

f each request based on travel time to reach the task and the ex-

ected cooperative reputation credit received. Thus, its utility value

an be defined as: 

(u i , S k ) = ρi − δa i j , (15)

here ρ i and a i are the cooperation credit and travel time of u i 
hen it attempts to join coalition k. δ is the weight indicating

he relative significance of the travel time compared to the ex-

ected credit. Algorithm 2 shows the pseudo-code for the multi-

AV coalition formation, called Multi-Objective Quantum Genetic

lgorithm (MOQGA) coalition formation, and Fig. 2 presents a flow

hart of the proposed algorithm. 

. Experimental results 

To evaluate the performance of the proposed QIGA-based coali-

ion formation method, two main scenarios with different num-

er of UAVs and PoIs were simulated. It is assumed that the UAVs

nd PoIs are uniformly distributed across the region and the clos-

st UAV to the PoI is considered to be the one that first detects the

oI and form a coalition (as a coalition leader). It is also assumed

hat each UAV has five different types of resources. The values for

he UAVs’ resources are generated with a random uniform distri-

ution and the UAV’s resource failure rates are produced randomly

n the range (5 × 10 −5 , 10 −4 ) . Furthermore, the execution times of

he identified tasks are computed randomly in the range between

0 and 20, depending on the task and the capability of the UAV. 
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Algorithm 2 Multi-UAV coalition formation using the leader- 

follower method and QIGA. 

1: Search PoIs in the search space 

2: Initialize each leader as a singleton coalition committed to a 

single PoI 

3: coalition _ members ← [ ] 

4: while there exists an idle UAV around do 

5: for all unsatisfied PoIs so far do 

6: coal _ mems ← execute MOQIG method regarding algo- 

rithm 1 

7: coalition _ members.append(coal _ mems ) 

8: end for 

9: Send bids to UAVs as potential followers 

10: Calculate the utility values of the followers and receive bid 

responses 

11: Update coalition members of each leader with respect to the 

bid responses 

12: end while 
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Fig. 2. Flowchart of the proposed algorithm. 
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In the first scenario, the resources are being fully recharged af-

er the completion of the mission. It is assumed that the majority

f resources depend on the battery usage and during each mission

he main portion of the battery is being depleted, therefore the

nvolved UAVs have to return to the station after each mission in

rder to recharge their consumed resources. While, in the second

cenario, the UAVs are able to join new missions (i.e., after com-

leting one) until they have enough resources. 

The performance of our proposed algorithm is compared with

hree well-known algorithms including: i) the distance-based coali-

ion formation method in which the coalitions are formed with

he closest UAVs to the leader (i.e., the leader only considers the

AVs in a certain distance of the PoI to be in the coalition and

o not evaluate them in terms of cooperative reputation or avail-

ble resources), ii) the common merge-and-split coalition forma-

ion [49] , and iii) a Non-Dominated Sorting Genetic Algorithm

NSGA-II) which is a fast, elitist and heuristic-based multi-objective

lgorithm. Table 3 shows the corresponding parameters for these

lgorithms. 
Table 3 

Initial values of algorithms’ parameters. 

Parameter 

Population size 
Maximum number of iterations 
Number of objectives 
Mutation probability 
Crossover probability 
Distribution index for crossover 
Distribution index for mutation 

NA: Not Available 

Table 4 

Percentage of completed tasks and average of resource violations for different alg

No. of UAVs and tasks Method 

Distance − Based NSGA − II 

Completed tasks Resource violations Completed

8-2 67% 1.60 80% 

16-4 43% 3.83 86% 

32-8 39% 6.93 91% 

64-16 45% 11.97 92% 

128-24 47% 20.33 90% 
Table 4 represents some statistics regarding the completed tasks

nd resources violations for different algorithms, where the re-

ources violation is defined as the formed coalition exceeds the re-

uired resources to perform a given task. It demonstrates that the

erformance of the proposed coalition formation method is quite
Method 

Distance − Based NSGA − I I MOQGA 

NA 200 200 

NA 500 500 

1 3 3 

NA 10% NA 

NA 90% NA 

NA 20 NA 

NA 100 NA 

orithms in 30 missions (with different numbers of UAVs and tasks). 

MOQGA 

 tasks Resource violations Completed tasks Resource violations 

0.43 90% 0.30 

0.60 90% 0.43 

0.73 97% 0.20 

2.03 95% 1.23 

4.33 94% 2.47 
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Fig. 3. Comparison of performance of the number of completed tasks for 10 missions separately for the proposed method and other algorithms, when there are different 

numbers of UAVs and PoIs (targets) in the environment. 
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better than other algorithms addressed here in terms of percent-

age of completed tasks and average of resource violations. We also

compared the proposed method against the merge-and-split coali-

tion formation algorithm. The percentage of completed tasks for

the merge-and-split method in 30 missions for different numbers

of UAVs and tasks were between 46% and 50%, while, as shown

in Table 4 , our method could achieve rate of 90% in task comple-

tion. Regardless of the lower qualities of solutions that the merge-

and-split method provides, it also suffers from instability and be-

ing time consuming, as it takes a lot of time to compare each two

coalitions in the system in order to merge or split. 

Fig. 3 shows the number of completed tasks of the proposed

coalition formation method compared to the method of selecting

the closest UAVs to target (regardless of resources), and NSGA-II for

10 different missions. As shown in this figure, we observe that the

MOQGA coalition formation method can form the required coali-

tion successfully to carry out the identified tasks in most of the

missions while other methods often fail to do that. Fig. 4 also il-

lustrates the number of resource violations of different coalition

formation algorithms for 30 various missions. As seen in Fig. 4 , the

proposed method is able to complete the assigned tasks in signifi-

cantly fewer number resource violations compared to other exper-

imented methods. Fig. 5 compares the qualities of solutions (i.e.,

the Pareto-optimal fronts) of the MOQGA to NSGA-II algorithm.

Fig. 5 demonstrates that the performance of the proposed method
s better than the NSGA-II algorithm and it results in superior qual-

ty solutions in terms of lower cost and higher reliability. 

In the second scenario, we experimented how the resources are

onsumed when the UAVs join the coalitions and showed how it

mpacts the future missions. Fig. 6 depicts the number of com-

leted tasks of the proposed coalition formation method against

he method of selecting the closest UAVs to target and NSGA-II for

0 different missions. As we can see in the figure, the number of

ompleted tasks decrease overtime for all algorithms. The reason is

hat the resources of included UAVs in the missions are depleted

very time they join a mission, and consequently it makes them

o not have enough resources for the next missions. Therefore, the

umber of completed tasks decrease, and accordingly the resource

iolations for each mission increase. Nevertheless, The proposed

oalition formation algorithm still performs better in comparison

ith other tested methods. 

Fig. 7 displays the changes in UAV’s cooperative reputation over

he course of time. It is assumed that UAVs, u 5 and u 6 are not

rustworthy in the sense that they do not consume all the re-

ources they originally committed to when being selected for a

oalition. As seen in the figure, the reputations of these UAVs de-

rease at each time slot, therefore it is less likely that these UAVs

re being selected by the leaders over the course of time. 

Finally, the impact of reliability in coalition formation is studied

n Table 5 , where a pre-defined failure rate of 90% is considered
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Fig. 4. The number of resource violations for the proposed coalition formation method at each mission compared to the distance-based and NSGA-II algorithms, when there 

are different numbers of UAVs and tasks in the environment, respectively. 

Table 5 

The selected UAVs by leaders in 10 missions, assuming that the UAVs u 5 and u 6 have the highest failure rate 

among all the UAV members (the failure rate of UAVs u 5 and u 6 is 90%). 

Time slot Coalition 1 Satisfied Coalition 2 Satisfied Unreliable UAVs 

1 L { u 6 }; F { u 3 , u 4 , u 8 } Yes L { u 1 }; F { u 7 , u 2 } Yes {} 

2 L { u 2 }; F { u 3 , u 8 , u 4 } Yes L { u 1 }; F { u 3 , u 7 } Yes {} 

3 L { u 2 }; F { u 3 , u 5 , u 8 } Yes L { u 6 }; F { u 4 } Yes { u 5 } 

4 L { u 2 }; F { u 4 , u 7 , u 3 } Yes L { u 1 }; F { u 5 , u 6 , u 8 } No { u 5 , u 6 } 

5 L { u 5 }; F { u 1 , u 3 , u 4 } Yes L { u 2 }; F { u 7 , u 8 } Yes {} 

6 L { u 1 }; F { u 3 , u 4 } Yes L { u 2 }; F { u 5 , u 6 , u 8 , u 7 } No { u 5 , u 6 } 

7 L { u 5 }; F { u 2 , u 3 , u 8 } Yes L { u 1 }; F { u 4 , u 7 } Yes {} 

8 L { u 5 }; F { u 2 , u 3 , u 6 } Yes L { u 1 }; F { u 4 , u 7 } Yes { u 6 } 

8 L { u 5 }; F { u 2 , u 6 , u 7 , u 8 } Yes L { u 1 }; F { u 3 , u 4 } Yes { u 6 } 

9 L { u 5 }; F { u 2 , u 7 , u 8 } No L { u 1 }; F { u 3 , u 4 } Yes {} 

10 L { u 5 }; F { u 1 , u 3 , u 4 } Yes L { u 2 }; F { u 7 , u 8 } No {} 

L: Leader, F: Follower 

f  

U  

a  

n  

l  

M  

a

or resources of UAVs u 5 and u 6 . Table 5 represents the selected

AVs (e.g., followers) by the leaders where there are two unreli-

ble UAVs. As shown in the table, the proposed method tries to

ot select unreliable UAVs in most cases. The reason for the se-
ection of unreliable UAVs in some cases is that the problem is a

OOP and the method has to consider other objectives (i.e., cost

nd reputation) in the coalition formation as well. 
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Fig. 5. The Pareto-optimal fronts for the simultaneous optimization of the coalition formation cost and reliability (multi-objective optimization) provided by the proposed 

method (MOQGA) and NSGA-II. 

Fig. 6. The number of completed tasks and the number of resource violations for 10 missions for three different algorithms. Here, it is assumed that the resources are 

depleted every time the UAVs finish the mission. 
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Fig. 7. Changes in UAVs’ cooperative reputation over time, where UAVs u 5 and u 6 are assumed to be selfish. 
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. Conclusion 

In this paper, we proposed a leader-follower UAV coalition for-

ation method to provide a practical solution for distributed task

llocation in an unknown environment with a large-scale net-

ork of UAVs. Three critical aspects of cost minimization, reli-

bility maximization, and the potential selfish behavior of the

AVs were considered in this coalition formation problem (i.e., a

ulti-objective optimization coalition formation problem), and a

uantum-inspired genetic algorithm is proposed to find the opti-

al coalitions with a low level of computational complexity. To

valuate the performance of the proposed method, several scenar-

os with different numbers of tasks ranging from 4 to 24, and a

eterogeneous network of UAVs consists of a various number of

AVs ranging from 8 to 124 were experimented. The proposed

pproach led to promising results compared to existing solutions

ith respect to completing a higher number of tasks and mini-

ally overspending the resources. 
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