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ABSTR ACT: Identifying subsets of genes that jointly mediate cancer etiology, progression, or therapy response remains a challenging problem due 
to the complexity and heterogeneity in cancer biology, a problem further exacerbated by the relatively small number of cancer samples profiled as 
compared with the sheer number of potential molecular factors involved. Pure data-driven methods that merely rely on multiomics data have been 
successful in discovering potentially functional genes but suffer from high false-positive rates and tend to report subsets of genes whose biological 
interrelationships are unclear. Recently, integrative data-driven models have been developed to integrate multiomics data with signaling pathway 
networks in order to identify pathways associated with clinical or biological phenotypes. However, these approaches suffer from an important draw-
back of being restricted to previously discovered pathway structures and miss novel genomic interactions as well as potential crosstalk among the 
pathways. In this article, we propose a novel coalition-based game-theoretic approach to overcome the challenge of identifying biologically relevant 
gene subnetworks associated with disease phenotypes. The algorithm starts from a set of seed genes and traverses a protein–protein interaction net-
work to identify modulated subnetworks. The optimal set of modulated subnetworks is identified using Shapley value that accounts for both individual 
and collective utility of the subnetwork of genes. The algorithm is applied to two illustrative applications, including the identification of subnetworks 
associated with (i) disease progression risk in response to platinum-based therapy in ovarian cancer and (ii) immune infiltration in triple-negative 
breast cancer. The results demonstrate an improved predictive power of the proposed method when compared with state-of-the-art feature selection 
methods, with the added advantage of identifying novel potentially functional gene subnetworks that may provide insights into the mechanisms 
underlying cancer progression.
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Introduction
A critical problem in cancer research involves the identification 
of a subset of genes that play crucial roles in different stages 
of cancer progression from its early stages of carcinogen-
esis up to the final stage of metastasis. A model that can 
reliably identify molecular determinants of clinical outcomes 
would not only enable the discovery of functional biomark-
ers predictive of therapy response or disease progression but 
also provide insights into novel therapeutic targets in this 
aggressive disease.

The design of data-driven models to identify aberrations 
in genes, including differential expression, somatic muta-
tions, and copy-number alterations, that are associated with 
clinical outcomes has been the center of attention in the past 
few decades.1–3 This is accelerated in recent years due to a 
huge drop in the cost of next-generation RNA sequencing 

and genomics profiling and the availability of several public 
databases such as The Cancer Genome Atlas (TCGA).4–6

Pure data-driven models such as gene set enrichment 
analysis (GSEA)2 that relate multimodal genomics measure-
ment to clinical or biological phenotypes demonstrated a 
great success in the discovery of cancer biomarkers and sub-
sets of genes enriched for a desired outcome. However, these 
methods suffer from a major drawback of high false discov-
ery rate (FDR), where only a small subset of reported genes 
play significant roles in the cancer disease and the majority of 
reported genes are false alarms that arise from measurement 
noise, heterogeneity of cancer samples, and overfitting issue. 
Overfitting is unavoidable due to the extremely large num-
ber of predictors (such as gene expression data), which is in 
the orders of ten thousands with respect to the samples in the 
orders of hundreds for most cancers.
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The second drawback of these methods is that the reported 
genes may or may not involve in a shared molecular interac-
tion and hence provide minimal insight for molecular biology 
scientists to discover the actual underlying biological process 
that leads to the specific phenotype of interest. To avoid this 
drawback, recently, integrative models are proposed to integrate 
multiomics data with biologically driven pathway networks 
in order to identify biologically meaningful subnetworks 
of genes that are enriched for desired biological outcomes. 
However, these approaches suffer from another important 
drawback of restricting the identified genes to belong to puta-
tively discovered pathway networks and miss the yet undis-
covered genomic interactions as well as potential interpathway 
relations. In this work, we take an intermediate approach and 
use protein–protein interaction (PPI) networks as our basic 
interaction platform. PPI networks are similar to pathways in 
that both consist of interacting biomolecular entities affecting 
specific cellular functions. While pathway networks consist 
of a relatively small number of deeply characterized regula-
tory and signaling events representable as directed graphs, 
PPI networks capture genome-wide interactions derived from 
high-throughput molecular profiling and large-scale biological 
screens. PPI networks, which are represented as binary undi-
rected graphs, capture direct, indirect, and as yet undiscov-
ered regulatory interactions and can be understood to capture 
complex cellular logic as simplified connections between pairs 
of genes.7 Thus, PPI networks provide more flexibility for the 
discovery of novel biological mechanisms underlying disease 
phenotypes. Moreover, edge ontology of signaling pathway 
networks are not well standardized, and this difference may 
cause a problem in inference algorithms.8

As stated above, to reduce high false reporting rates and 
enhance generalizability of the developed input–output relation 
models, sparsity imposing methods are desired. Discriminative 
component analysis methods of dimensionality reduction such 
as canonical correlation analysis, linear discriminant analysis,  
and independent discriminant analysis are developed to 
project data into new subspaces, where a few components bear 
the most discriminative information about data, hence simpli-
fying data storage, prediction, and interpretation.9 Although 
very efficient in dimensionality reduction, these methods are 
not ideally suited for the identification of genes driving cancer 
progression, since the predictors are provided in the trans-
formed subspace.10

Explicit feature selection methods are divided into wrap-
per methods and filtering methods.11 In filtering methods, 
the predictors are chosen based on their strong connection 
to the labels with less connection among the features using 
various geometric or information-theoretic measures, whereas 
in wrapper methods, the features are chosen based on their 
impact to the classifier. Wrapper methods require exhaustive 
search and are thereby computationally expensive, while filter 
methods with geometric distance measures are very fast but 
incapable of capturing nonlinear relations. On the other hand, 

information-theoretic filtering methods are very powerful but 
become computationally expensive. Furthermore, they require 
a large number of samples in order to obtain reliable empirical 
information-theoretic measures.12 In cancer genomics, we 
are interested in methods that incorporate gene-interaction 
information such as PPI or biological pathway network 
databases in the feature selection process, in order to identify 
functionally related sets of genes that jointly discriminate 
between phenotypes.13,14

In this work, we develop a game-theoretic solution 
that develops pathways emerging from a seed gene set in 
PPI network by traversing the network to discover the most 
informative pathways associated with a desired outcome. 
This algorithm reports a set of compact subnetworks that 
are collectively associated with the modulation of a specific 
biological process or clinical outcome, thus facilitating the 
development of biomarkers using core representative nodes 
within the identified subnetworks, as opposed to measuring 
all the genes individually.

We highlight the utility of the proposed algorithm by 
applying it to two unique and challenging problems that differ 
both in terms of the nature of the molecular factors involved 
and the phenotype being modeled. In the first application, we 
focus on identifying gene subnetworks that are jointly associ-
ated with platinum resistance in ovarian cancer, whereas the 
second application focuses on discovering genomic determi-
nants of immune infiltration in triple-negative breast cancer 
(TNBC). We show that our algorithm identifies biologically 
meaningful gene subsets in both applications, while achieving 
improved statistical association as compared with other fea-
ture selection algorithms.

Coalition game review. In this section, we introduce the 
concept of coalition game theory and its application in predic-
tive modeling and feature selection considering the synergic 
predictive power of selected features. Coalition game refers to 
a class of games, where the players cooperate with one another 
by forming coalitions15 as opposed to noncooperative games in 
which the players act individually and compete over a common 
resource.16 Coalition games have been recently utilized in fea-
ture selection problems to account for the relevance among 
potentially effective combinations of the features as well as 
providing a quantitative measure of the impact of each feature 
on the overall prediction.17–21 Coalition-based game-theoretic 
methods can significantly improve the prediction accuracy 
compared with most existing feature selection techniques that 
either account only for the impact of individual features on 
the target labels or consider at most the pairwise correlation. 
In these conventional approaches, the features that have a 
low individual impact against the outcome but a considerable 
contribution when grouped with other features will most 
likely be filtered out that result in missing actual informative 
features.

In this work, we propose a novel network-based coalition 
game (NBCG) algorithm, where the game players are gene 
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subnetworks extracted from the networks. In this algorithm, 
the game players are subnetworks that are not fixed, but rather 
developing identities over the game iterations by picking up 
new genes from the PPI network.

Let N be the number of players,  = {P1,...,PN} be the 
set of players and ν denote the characteristic function for a 
transferable utility coalition game (, ν). The characteristic 
function, ν is a real-valued function defined on the set of all 
coalitions, ν: 2P →  . If  denotes a coalition set,  ⊆ , the 
total payoff that can be gained by the members of coalition 
 as defined by the characteristic function ν(). This func-
tion satisfies the two conditions as follows: (i) characteristic 
function of an empty coalition is zero, ν(φ) = 0 and (ii) if i 
and j (i, j ⊆ ) are two disjoint coalitions, the character-
istic function of their union has superadditivity property, as 
ν ν( ) ( ) ( )   i j i j � + . The game solutions are determined 
with possible scenarios that the players can form coalitions 
and how the total payoff of a coalition is divided among the 
coalition members.

Marginal importance of a player Pi, ∆i(), is defined as its 
contribution when it joins a coalition  and is obtained by

∆ = −i P( ) ( { }) ( ).  ν ν i �
(1)

This marginal importance of a player does not reflect a 
fair share of the player from the characteristic function, since 
it depends on the order of the players in forming the coali-
tion. To define a fair solution of the coalition game (, ν), 
we define the real-valued function, γ that assigns an N-tuple 
of real numbers, γ (ν) = (γ1(ν), γ2(ν),...,γN(ν)) based on the 
adopted characteristic function, in which γi(ν) measures the 
value of player Pi in the game with characteristic function ν. 
The Shapley value can then be defined as a fair unique solu-
tion of the game as it assigns a fair quantity for each player 
based on the average contribution of the player among all 
possible coalitions with all possible permutations.22 Formally, 
the Shapley value of the player, Pi ∈  denoted by γi(, ν) is 
defined as the expected marginal importance of the player Pi 
to the set of players who precede this player.

( )
∈∏

ν = ∆∑
π

γ π 
1( , ) ( ) ,

!i i iN �
(2)

where ∏ is the set of all N ! permutations of  and i(π) is 
the set of players preceding player Pi in the subset  with 
permutation π.

In modeling the feature selection problem with a coali-
tion game, the attributes (gene subnetworks extracted from 
the networks) are defined as the game players, and the mar-
ginal contribution of the player Pi to coalition  is described 
as the improvement in the prediction capability of this coali-
tion based on application-dependent evaluation method. The 
payoff of each coalition , ν(), measures the contribution 

of a coalition to the performance of the predictive model 
(eg, classification success rate in supervised learning). In this 
model, different possible coalitions of genes and pathways are 
examined to recognize the optimal classification features.

Since in attribute selection problem, the order of features 
inside a coalition does not change the coalition power, the calcu-
lations of Shapley value in (2), can be further simplified by exclud-
ing the permutation inside the already formed or to be formed 
coalitions in the average, resulting in the following equation:

⊆

= ∆ − −∑


   
\

1( , ) ( )| | ( | | 1)!,
!i i i

P i
N

N
γ ν

�
(3)

where |A| denotes the cardinality of set A and  ⊆ \i 
represents the coalitions to which player Pi does not belong. 
Moreover, ||i and ||i (N - || - 1) correspond to the permu-
tations of the preceding players and the subsequent players, 
respectively.

In attribute selection applications with a large number of 
players, computation of Shapley value for all possible feature 
coalitions may be computationally intensive. Therefore, we 
utilize the multi-perturbation Shapley value analysis (MSA), 
which is determined using an unbiased estimator based on 
Shapley value by using sampled permutations of players that 
form coalitions up to size N ′. The idea behind this method is 
that coalitions of size N ′ , N are capable of capturing the syn-
ergic power of players, and hence larger coalitions only present 
additive power. Therefore, we use

′∈∏′

′ ν = ∆
∏ ∑

π

γ π 
1( , ) ( ( )),

| |
N

i i i
N �

(4)

where ∏N ′  denotes the sampled permutation on subgroups 
of players of size N ′. In this work, we use the approximate 
method of MSA with N ′ = 4. In our proposed algorithm, at 
each round, the features are randomly divided into groups of 
size N ′. Then, we calculate the corresponding MSA of feature 
Pi inside its group, γi′(, ν), considering all possible coalitions 
of size 1  n  N ′.

Methods
In this section, we elaborate on the proposed algorithm to 
find the modulated subnetwork of genes that collectively 
contribute to cancer phenotyping. We first note that the genes 
interact with one another either directly or through other 
cellular entities such as RNA, proteins, enzymes, and pro-
tein complexes. These complex interactions are modeled by 
directed graphs called pathway networks, where each path-
way correspond to a biological process active in all or some 
specific tissue types. Two genes may be indirectly connected 
to each other through different biological pathways. Each 
gene is part of a genome that contains a unique sequence of 
four types of nucleobases including adenine (A), cytosine (C), 
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guanine (G), or thymine (T) and hence encodes for a specific 
protein through a chain of complex protein synthesis pro-
cesses including transcription, splicing, and translation. The 
interactions between the protein products are modeled as 
undirected graphs called PPI networks.

Proposed algorithm. In order to identify the subset of 
genes that play a role in various cancer-related subtyping (eg, 
success in therapy response for a specific drug), we remind 
the fact that the interacting genes through some biological 
processes are more likely to play a collective role in cancer 
subtyping, since all subtypes are results of an alteration in 
one or more biological processes. We also note that pure 
data-driven methods fail in identifying genes that contrib-
ute to a specific phenotype due to the well-known large p and 
small n paradigm, where the number of parameters (genes) 
is overwhelmingly higher than the number of samples. This 
causes high false rate, and the classical sparsity imposing 
methods do not perform well due to bias to the utilized data-
set and measurement noise. Therefore, a key solution is to use 
the prior biological knowledge of the interaction among the 
genes. In this algorithm, we enforce the algorithm output to 
report the genes from multiple subsets of interacting genes as 
our sparsity imposing method.

In this work, we use PPI networks instead of pathway 
networks due to the following reasons. Some of the signaling 
pathways are tissue specific, and the regulatory networks may be 
different from one tissue to another. For instance, the estrogen-
receptor signaling pathway may be particularly relevant in 
breast tissue, while not very active in other tissues. Second, 
these pathway networks differ from one source to another 
and are subject to constant revisions and modifications. Third, 
sticking to pathway networks, we may miss the interaction 
between different pathways through as yet undiscovered 
interactions. PPI networks are also much denser networks than 
pathway signaling networks with a higher number of connec-
tions among nodes. Therefore, using the PPI networks, it is 
less likely to miss any related genes in the final results even 
though their actual biological interacting mechanism is not 
yet fully discovered and hence is not present in well-curated 
signaling pathway networks. Furthermore, even if an actual 
relation among the two genes is missing in the PPI network, 
starting from multiple seed genes prevents losing this missed 
connection in the final results. The PPI network is provided as 
an undirected Boolean graph, where the nodes are genes (or 
their corresponding protein products) and the edges represent 
biochemical interactions between the connected nodes.23 We 
use the human PPI network and represent it as a G × G binary 
matrix A, where G = 12126 is the number of genes.

The proposed algorithm is called Network-Based 
Coalition Game (NBCG) that presents a network traversal 
algorithm, where the directions of network browsing are 
determined by a coalition-based game solution. An earlier 
version of this algorithm is presented in Ref. 21, and the 

modified version of this algorithm along with two illustrative 
applications is provided next.

The NBCG algorithm, as depicted in Figure 1, starts 
from some initial nodes (seed genes) and then gradually 
develops links by picking up the nodes from the neighbor-
hood of the subnetwork that present maximal contribution 
to the desired predictive function. At consecutive iterations, 
each link has the option of extending from the left or right 
end to form a connected link. The algorithm stops if a desired 
performance criterion is met or the number of nodes reaches a 
predefined limit. The algorithm reports a subset of connected 
subnetworks that are collectively enriched for an outcome of 
interest. In order to obtain higher enrichment properties, the 
algorithm runs in multiple times with different initializations, 
and the round with the best outcome is chosen as the final 
result. Moreover, we can use averaging methods to report the 
modulated subnetworks based on their frequency of appear-
ance at multiple runs as will be discussed in the results section. 
This algorithm is general and can be applied to a wide range 
of applications. The following are the different blocks of the 
proposed algorithm for each run.

Initializations. To select the subset of genes that are 
enriched for a phenotype, we start with an initial set of L - 1 
genes, from which the subnetworks emerge. The seed genes 
may be chosen randomly or using prior biological knowledge 
based on the application of interest. For instance, one may 
choose the genes that are most frequently mutated in the 
cancer being studied that derive the cancer and hence may 
have crucial impact on the desired cancer-related outcome. 
Another option would be to choose the initial genes by their 
individual prediction power in the adopted predictive mod-
eling (eg, the genes with the highest association with the 
target labels). The drawback of both approaches is that they 
are data-driven methods and may have the issue of biasing 
to the employed dataset. Therefore, we propose to choose the 
initialization genes based on their degree distribution in the 
utilized PPI network. Using hot spot nodes in PPI network 
provides more flexibility in browsing the network toward a 
true functional subnetwork and reduces the chance of missing 
important subnetworks. This approach also provides higher 
convergence rate due to a shorter path from hub nodes to the 
actual modulated subnetworks.

Another reasonable choice is to choose the initial genes 
from a set of genes that present high association between 
the genomics data (eg, gene expression, somatic mutations 
and …) with the target phenotype based on a desired correla-
tion matrix. This is also a reasonable choice, since the highly 
modulated subnetworks are expected to include signifi-
cantly important individual genes. Therefore, starting from 
these nodes accelerates convergence to the actual modulated 
subnetworks. The drawback for this approach is the bias to 
the initial guess and reducing the chance of the discovery of 
subnetworks that are formed by genes that collectively, but not 
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individually, impact the desired phenotype. It is notable that 
the best approach to form the pool of initialization gene set 
depends on the application of interest. It is also worth men-
tioning that regardless of the approach that we use to form 
the pool of initialization genes, we run the algorithm R times 
with different seed gene subsets that are randomly chosen 
from the pool of initialization genes. Therefore, the chance of 
missing the actual modulated subnetworks is very low. Once 
the initial genes are chosen, each of them is considered as a 
subnetwork with only one node to be developed to a higher 
subnetwork as follows.

Subnetwork expansion. Each internal iteration of algo-
rithm consists of two steps, namely, network expansion and 
contraction. If = … ∈ …


 1 2 | |{ , , , }, {1, 2, , }

ii i i iG G G i L  is the 
set of i genes forming subnetwork i, then at network 
expansion step, we add a node to each already developed 
subnetwork i such that the resulting new network results 
in a better game-theoretic evaluation. Obviously, at the first 
iteration, each subnetwork consists of a single seed gene 

= ∈(ie,| | 1, {1, 2,..., })i i L  from which a subnetwork emerges.
First, we form a candidate gene set for each subnetwork. 

If = …


 1 2 | |{ , , , }
ii i i iG G G  is the set of i genes forming 

subnetwork i, then the inclusion candidate gene set Ωi for 
subnetwork i is defined as the set of genes in the direct 
neighborhood of the subnetwork or equivalently the nodes 

with direct links to any of the subnetwork nodes in the 
PPI  network, ie, Ωi = {Gik: Gij ∈ i, A(Gij,Gik) = 1} for all  
k ∈ {1,2,...,G} and i.

Then, we run a coalition game for the players includ-
ing the current subnetworks i, i ∈ {1,2,...,L} and the set of 
the candidate genes. For each subnetwork i, we calculate 
Shapley value for each candidate gene Gik ∈ i by forming 
a coalition game with player set = …   1 2{ , , , , }

LN ikG , 
where = +| | 1L . The Shapley value for the candidate gene 
quantifies the expected marginal importance of the candidate 
gene when forming coalitions with different combinations 
of the current subnetworks as elaborated in the “Methods” 
section. Evaluation of the characteristic function for each 
coalition ν(Ci) depends on the desired objective based on the 
application as described in the “Conclusions” section for two 
proposed applications. The candidate gene with the maxi-

mum Shapley value, 
∈Ω

= ν(add) argmax ( )
ik

ik i
i G

G
G γ , is chosen to join 

the subnetwork Si, provided that its Shapley value exceeds 
a predefined threshold value Tadd νγ ( add ) add(ie, ( ) )

iG
T� . This 

condition is required since there might be cases that none of 
the candidate genes contribute significantly to the desired 
objective or even contribute negatively. In such a situation, a 
stop flag Fi is set for the subnetwork meaning that the expan-
sion of the corresponding subnetwork Si is terminated and 

Figure 1. An example of developing five modulated subnetworks over a PPI network. The initialization seed genes are marked with green color. The paths 
may loop back to themselves or join each other to form chain, star, and loop configurations.
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hence is excluded from the expansion steps in the subsequent 
iterations. The termination flag Fi is also set if the number 
of nodes in each subnetwork exceeds a predefined value Smax. 
This procedure is repeated for all active subnetworks.

Note on computation complexity. It is noteworthy that in 
contrast to conventional games, game players are not static 
entities and rather they are developing entities over the con-
secutives iterations of the coalition game. This implementation 
significantly reduces the complexity of the game with respect 
to the conventional method of considering each individual 
gene as a game player.

We note that the computational complexity of the algo-
rithm is exponentially proportional to the number of players. 
Since we repeat the game for each candidate gene, the complex-
ity of the proposed game is +Ω … Ω × 

1
1(| | 2 )L

LO . If we use 
MSA method with maximum coalition size L′ , 1 + L, then 
complexity reduces to ′Ω … Ω × 1(| | 2 )L

LO . Therefore, the 
complexity of the game exponentially grows with the number 
of subnetworks and hence does not increase by the game evo-
lution. This complexity is much less than the conventional 
method of treating each gene as a game player that provides 
the complexity of 1 1| | | |(2 )L LO Ω … Ω + … …      , which grows expo-
nentially with the number of genes forming the subnetworks 
and hence increases over the consecutive iterations.

Subnetwork contraction. In the early version of this 
algorithm that is presented in Ref. 21, each iteration of the 
algorithm includes only a network expansion step. One draw-
back of this approach is that each subnetwork evolves from a 
randomly selected seed gene and expands toward a modulated 
subnetwork. Therefore, the subnetworks always include the 
seed genes and in order to find the best modulated subnet-
work, we need to start from a large number of sets of dif-
ferent initialization genes in order to determine the best set 
of modulated subnetworks enriched for a desired outcome. 
In this modified version, we include an additional step of net-
work contraction by removing the nodes whose contribution 
to the desired outcome in terms of the Shapley value is below a 
predefined limit. Therefore, the subnetworks have the flexibil-
ity of moving away from the seed genes along the PPI network 
to the modulated subnetworks. This is due to the fact that the 
contribution of each gene to the desired outcome may change 
as the subnetworks evolve over time.

In order to identify the genes with low (or negative) 
Shapley values, we first define a set of exclusion candidate 
genes ψi for each subnetwork Si. The algorithm chooses the 
subnetwork edges including the nodes that are connected only 
to one node in the developed subnetwork; hence, their removal 
does not break down the subnetwork into two disjoint subnet-
works. For instance, if = ∈ ={ : , ( , ) 1}j K K i K ijG G A G Gθ  is 
the set of neighbor nodes for gene Gij ∈ Si, then Gij ∈ ψt if and 
only if we have =θ | | 1j i .

To evaluate each candidate gene Gik, we exclude 
it from the corresponding subnetwork and then run a 
coalition game for the set of players including the current 

subnetworks and the candidate genes of interest, ie, 
= … …    1 2{ , , , \ , , , },

Li ik N ikG G  where  = L + 1. The 
Shapley value for the candidate gene Gik quantifies the expected 
marginal importance of the candidate gene in coalition with 
different combinations of the current subnetworks. The gene 
with the minimal Shapley value 

∈Ω
= ν( remove) argmin ( )

ik
ik i

i G
G

G γ  has 

the lowest contribution to the game outcome and hence can be 
removed from the host subnetwork if its contribution is below 
a predefined threshold value Tremoval (ie, Gi

(remove)  Tremoval). 
The removal threshold Tremoval should be chosen conserva-
tively and below the expansion threshold Tadd to avoid remov-
ing informative nodes (Tremoval  Tadd). A reasonable value is 
Tremoval = 0 to remove only the nodes with negative contribu-
tion to the game outcome.

Repeating this game for all removal candidate genes for 
all subnetworks provides the resulting subnetworks at the end 
of the current iteration.

Subnetwork evaluation and termination criteria 
check. At each algorithm iteration, the game-based expansion 
and contraction steps provide a set of at most L subnetworks. 
As mentioned earlier, subnetworks are allowed to join each 
other and form a new larger subnetwork. At the end of each 
iteration, the performance of the obtained subnetworks 
denoted by Acc(t) is evaluated based on the appropri-
ate performance metric for the application of interest, ie, 

= ν …    ( ) ( ) ( ) ( )
1 2Acc ( ).t t t t

L  The iterative algorithm stops 
if one of the following terminations conditions is met:

(i)	 If the termination flags for all of the subnetworks are 
set either due to lack of an informative node in their 
neighborhood (ie, ν ∀ ∈Ωγ add( ) for )

ikG ik iT G�  or due to 
reaching the maximum number of nodes for a subnet-
work (ie,  ( )

max| t
i � , where postscript (t) denotes itera-

tion t).
(ii)	 If the number of total collected genes exceeds a pre-

defined value 
=∑  ( )

max1
(ie, | | )N t

ii
N� .

(iii)	 If the number of iterations reach its maximum value NT 
(ie, t . NT).

(iv)	 If all subnetworks remain unchanged during the current 
iteration and no gene is added or removed from a subnet-
work −= = … ( ) ( 1)(ie, for 1, 2, , )t t

i i i L .
(v)	 If the desired performance at the end of the iteration t 

denoted by Acc(t) based on the collected genes forming 
the developed subnetworks reaches a predefined desired 
value ( )

max(ie, Acc Acc )t � .

We note that the last two conditions are the most impor-
tant conditions controlling the performance of the algorithm 
by timely terminations. Other termination criteria are defined 
to avoid nontermination of the algorithm when it does not 
converge to a meaningful set of subnetworks, and thus, these 
conditions should be chosen loose enough to avoid early 
terminations.
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If the termination criterion is satisfied, the algorithm ter-
minates and the subnetworks along with the obtained perfor-
mance are reported. Otherwise, the next iteration is executed.

As mentioned earlier, since the algorithm starts with 
randomly chosen seed genes, the algorithm is executed 
multiple times (denoted by R) and the resulting subnetworks 
for the algorithm execution that yield the best performance 
are reported. The summary of each run of the algorithm is 
presented in Figure 2.

Results
In this section, the proposed algorithm is utilized to solve two 
important cancer-related problems including (i) identification 
of gene subnetworks whose expressions mediate platinum-
based therapy response in ovarian cancer and (ii) identification 
of gene subnetworks whose somatic disorders significantly 
impact immune system scores in breast cancer. The main 
difference between utilizing the proposed algorithm for the 
two applications is coalition evaluation method based on the 
characteristic of training dataset. There are also some other 

minor differences that will be elaborated by detailing utiliza-
tion of the proposed NBCG algorithm for both applications 
in the following sections.

Therapy response prediction in ovarian cancer. In this 
application, we are interested in finding a subset of biologically 
relevant gene sets that significantly impact therapy response 
in ovarian cancer. Ovarian cancer is an extremely aggressive 
disease with poor overall outcomes due to late diagnosis and 
lack of targeted therapies.4 Furthermore, a majority of ovarian 
cancer patients progress or suffer cancer recurrence within five 
years of frontline platinum-based therapy. Identification of 
gene subnetworks associated with resistance to platinum-based 
therapy resistance24,25 would enable the discovery of functional 
biomarkers and novel therapeutic targets in this aggressive 
disease. Accordingly, we here apply our algorithm to identify 
gene subnetworks within the human PPI network whose joint 
expression levels are associated with recurrence-free survival 
on platinum-based therapy in ovarian cancer. The molecu-
lar data are obtained from TCGA dataset26 and include 201 
cancer samples with their gene expression levels and clinical 

Algorithm: Network-Based Coalition Game (NBCG) to identify modulated gene subnetworks

Inputs:
•	 Training and test datasets (Xtraln, ytraln, Xtest, ytest)
•	 Set of 100 initial genes Gs
•	 PPI network in terms of binary matrix A
•	 Evaluation method: characteristic function ν()
•	 Algorithm parameters (L, L′, Accmax, Tadd, Tremoval, Smax, Nmax, NT)

Outputs: Set of subnetworks (S1, S2, … SL) and the obtained performance metric = ∪ ∪ …∪1 2acc ( )Lv S S S

1)	 Perform militalizations:
a)	R andomly choose L seed genes Gi1, i = 1, 2,., L from the set of initial genes Gs
b)	 For i = 1 to L: Initialize Subnetwork i: = =( 1)

1{ }t
i iS G , Reset stop flag Fi = 0

c)	R eset number of iteration: t = 0
2)	 Loop:
	I ncerement number if iteration: t = t + 1

a)	 Perform nextwork expansion: For subnetworks i = l to L
–	 Create set of inclusion candidate nodes: set of direct neighbor nodes Ωi
–	 For all Gik ∈ Ωi, calculate Shapley value ν( )

ikGγ

–	 Find the best inclusion candidate gene: 
∈Ω

= νγ(add) argmax ( )
ik

ik i
i G

G
G

–	I f −ν = =γ ( )
( ) ( 1) (add)

add( ) then S , else F 1add
i

t t
i i i iG

T S G�

–	I f =max| | then 1i iS S F�

End for
b)	 Perform nextwork contraction: For subnetworks i = l to L

–	 Create set of exclusion candidate nodes: set of end-point nodes ψi
–	 For all Gik ∈ Ωi, calculate Shapley value ν( )

ikGγ
–	 Find the best removal candidate gene: 

∈Ω
= νγ(remove) argmin ( )

ik
ik i

i G
G

G
–	 If −ν =γ ( remove )

( ) ( 1) (remove)
remove( ) then S S /

i

t t
i i iG

T G�

End for
c)	 Subnetwork evaluation and termination criteria check:

–	C alculate performance of the obtained subnetworks: = ν …  

( ) ( ) ( ) ( )
1 2acc ( )t t t t

LS S S
–	I f −

=
∀ = ∀ =∑ ( ) ( ) ( 1) ( )

max max1
| or 1or or acc acc or

N t t t t
i i i i Ti

S N F S S t N� � � , exit loop
End Loop

Figure 2. NBCG algorithm to identify modulated gene subnetworks using PPI networks.
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responses. The clinical response data include survival informa-
tion (death or cancer progression) after platinum-based che-
motherapy. We first divide the samples into two cohorts of 
poor and good survival rates. The poor survival cohort includes 
samples with events during the first six months of receiv-
ing platinum therapy, excluding patients who left the study 
(censored samples). Patients who survive at least six months 
without cancer progression are included in the good survival 
cohort. Therefore, therapy response classes are represented by a 
binary vector [ 1]Sny × , where nS = 201 is the number of samples.

The dataset [ ]S Gn nX ×  includes continuous-valued gene 
expression data for nG = 9544 genes and nS = 201 samples. The 
genes are the intersection of genes with available expression 
data and the genes whose protein product are included in the 
PPI networks. Noting the data type, we choose the classifi-
cation rate (based on fivefold cross-validation) as the charac-
teristic function ν(.) in the proposed game-theoretic NBCG 
algorithm. We choose to use the binary class labels as therapy 
response identifiers in order to accelerate algorithm runs. 
Given these binary class labels for phenotyping, a natural 
selection for characteristic function is classification accuracy. 
Furthermore, we use binary classification during training and 
test phases of the proposed algorithm to obtain the results, 
whereas, we use the method of Kaplan–Meier estimation after 
K-means clustering in order to compare the reported genes by 
our algorithm and other competitor feature selection methods 
to avoid bias to a specific test method.

We use the top-100 genes with the highest degree in the 
PPI network (hot spot nodes) as initialization gene pool. We 
only use network expansion step in the implementations for this 
application. The rest of the game parameters are set as follows:

The number of subnetworks are set to L = 5, which results 
in N = L + 1 = 6 players, including the candidate gene, maxi-
mum group size N ′ = 3, maximum number of collected genes 
at each subnetwork Smax = 20, maximum number of total col-
lected genes Nmax =  100, and maximum number of internal 
iterations NT = 100. The threshold on the Shapley value for 
including a new gene into the subnetwork is Tadd = 0 meaning 
that the gene with the maximal Shapley value is accepted if it 
improves the classification accuracy (in average) when it joins 
the previously formed coalitions. The desired classification 
rate to stop the algorithm is set to Accmax = 0.98. Large value 
of Accmax reduces false report rate by sticking to the algorithm 
runs that provide very impactful subset of gene subnetworks.

The algorithm runs for R = 100 rounds using randomly 
selected genes among the initialization gene pool. We first 
rank the genes based on their degree in the PPI network 
and select the top-100 genes as the initialization pool, and 
then we randomly draw a subset of four genes for each algo-
rithm execution. At each round of execution, the algorithm 
reports a collection of subnetworks that are highly associ-
ated with the survival outcomes. The proposed solution can 
be integrated with any binary classification method. In this 
work, we arbitrarily use the support vector machine (SVM) 

classification with radial basis function (RBF) kernel. How-
ever, the obtained results are not sensitive to the choice of clas-
sifier, and the numerical results show negligible change when 
using other classifiers (such as Random Forest, Naive Bayes, 
Bayes Net, and K-Nearest Neighbors [KNN]).

We compare the results with the same number of genes 
obtained using two benchmark solution categories. We 
apply state-of-the-art feature selection methods including 
correlation-based subset evaluation correlation based fea-
ture selection (CFS), chi-square test-based subset evaluation 
(chi-square), and mutual information-based subset evaluation 
method (gain ratio). Additionally, two representative wrapper 
methods including best first search method with Naive Bayes 
and ranker method with SVM classifier were also applied. 
These methods report the most informative genes that may or 
may not belong to the connected subnetworks. We also compare 
the proposed method with a network-based traversal method, 
where the subnetworks are initiated from the same initial gene 
seeds as in our proposed method. Instead of using the Shapely 
value, genes from the connected subnetwork in proximity of 
the seed genes are selected using a random walk until it collects 
the same number of genes as the proposed method. This whole 
procedure is repeated for R = 100 times, and the set of gene 
subnetworks, which provides the best prediction accuracy, is 
selected for comparison with the proposed methodology.

In order to compare the relevance of the obtained gene 
sets across methods, in addition to the classification accuracy 
based on phenotype survival rates, we also compare the dis-
criminative power of the gene sets in terms of continuous-
valued survival probabilities. Therefore, patients are clustered 
using K-means clustering based on the gene expression data 
for the selected genes reported by the different methods. Then, 
we estimate the survival probability for each cluster using the 
standard method of Kaplan–Meier estimation followed by 
survival difference estimation using the log-rank test method 
that provides the probability of obtaining such a difference 
purely by chance (P-value). The results of these comparisons 
are provided in Table 1 and Figure 3.

Table 1. Comparison of genes selected using the proposed method 
and other state-of-the-art feature selection methods based on its 
prediction accuracy and survival outcome separation.

METHOD LOG-RANK TEST  
P-VALUE

PREDICTION  
SUCCESS RATE

CFS 0.01814 0.6488

Chi-square 0.25505 0.6667

Gain-ratio 0.47773 0.5179

Best first Search 0.07646 0.5714

SVM: ranker 0.09190 0.5714

Optimal random walk 0.08060 0.6190

Proposed NBCG 0.00004 0.7262

Note: The results are corresponding to the first 18 genes reported by each 
method.
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Table 1 compares the proposed solution with the afore-
mentioned methods. For competitor methods, where the 
sorted list of genes are provided based on various correlation 
or information-based measures, we choose the same number 
of the top genes that are reported by our method, which is 18. 
We note that 18 is not a predefined value, but rather it is the 
number of genes that is reported by the algorithm, when it 
meets the stop criterion that is a set of rules based on various 
parameters as detailed in the “Subnetwork evaluation and ter-
mination criteria check” section. It is seen that the proposed 
method outperforms the other competitor methods. The main 
cause is that the proposed coalition-based solution considers 
the collective power of gene sets based on Shapley value 
concept. This is particularly interesting since the competitor 
methods are not restricted to choose the genes from the con-
nected subnetworks. The proposed solution provides more 
insightful and clinically relevant gene subnetworks.

The set of subnetworks identified by our proposed algo-
rithm for L  =  5 is depicted in Figure 3A. Subnetworks 1, 
2, and 4 correspond to (i) vascular endothelial regulation, 
(ii) TGF-beta signaling, and (iii) cell cycle progression and 
apoptosis pathways, respectively. These pathways belong to 
well-known hallmarks of cancer, thus suggesting that our 
proposed methodology is able to identify potentially func-
tional pathways mediating therapy resistance. The subnetwork 
5 joins subnetwork 4 at iteration 3 and subnetwork 3 stops 
extending at iteration 3, since no new informative neighbor 
genes were available. Indeed, while the TGF-beta signaling 
has previously been implicated as playing an oncogenic role in 
epithelial cancers, its role in mediating platinum resistance has 
not been widely explored. In addition, subnetwork 3, which 
includes the gene TXNDC9, is also a novel finding in this dis-
ease context. Notably, while the exact function of TXNDC9 
is as yet unknown, it is likely involved in cell differentiation 
and has been shown to be associated with increased risk of 
progression in colon cancer.27 Thus, our findings using the 
NBCG algorithm showing TXNDC9 being associated with 

platinum resistance in ovarian cancer makes it further likely 
that this gene could be a potential therapeutic target across 
disease contexts. Therefore, these results reveal the ability of 
NBCG to identify novel mechanisms and likely therapeutic 
targets across cancers.

Figure 3B presents the survival curves for patients clus-
tered into two groups using K-means clustering based on 
the expression level of the genes obtained from the proposed 
game-theoretic method (Fig. 3A). The result demonstrates 
that the proposed solution can identify gene subnetworks with 
higher survival discriminatory power as compared with the 
estimates from the best feature selection method (in this case, 
CFS; Fig. 4A) and the optimal network-based random walk 
solution (Fig. 4B).

Impact of somatic aberrations on immune system 
scores in TNBC. Multiple studies have demonstrated that 
evaluating the extent of tumor-infiltrating lymphocytes within 
triple-negative breast tumors can provide significant prognos-
tic information28–31 in this highly aggressive subtype of breast 
cancer. Indeed, we32 and others33–35 have shown that gene 
expression-based immune signatures can provide both infor-
mation on prognosis and response to therapy in specific sub-
sets of breast cancers. However, it is as yet unclear why certain 
subsets of TNBCs exhibit high levels of immune surveillance, 
while others escape it. Evidence in colon cancer suggests that 
genomic aberrations such as microsatellite instability are likely 
to contribute to increased immune surveillance,36 thus poten-
tiating the use of novel immune therapies37,38 in this cancer 
subtype. Therefore, we hypothesize that genomic aberrations 
affecting key pathways involved in maintaining genomic fidel-
ity are more likely associated with high lymphocytic infiltra-
tion in TNBC. Accordingly, we here apply our algorithm to 
identify mutated gene subnetworks that are associated with 
differential immune infiltration in TNBC.

We leveraged gene expression data from the TCGA and 
estimated the level of immune infiltration in the tumor sam-
ples using a previously published algorithm, ESTIMATE,39 

Figure 3. (A) Sample subnetworks reported by the proposed algorithm. Start genes are marked dark. The numbers show the sequence of subnetwork 
forming in consecutive algorithm iterations. (B) Platinum-free survival, P-value = 4 × 10-5.

http://www.la-press.com
http://www.la-press.com/biomedical-engineering-and-computational-biology-journal-j170


Razi et al

10 Biomedical Engineering and Computational Biology 2016:7(S2)

that is based on the expression levels of a 140-gene immune 
signature. Briefly, a single-sample gene set enrichment meth-
odology was used to derive the index of immune activity 
(immune index) by comparing the expression levels of the 140 
signature genes against the background expression of all genes 
on the array.39 The immune index values for all the samples 
in this study were estimated using the R-package associated 
with the published algorithm. Somatic mutations were deter-
mined using whole-exome sequencing data, while somatic 
copy-number alterations were obtained using SNP arrays. 
Subsequently, we applied our algorithm to identify gene sub-
networks whose mutations or copy-number alterations were 
significantly associated with high immune indexes.

Accordingly, we first obtained gene-level somatic copy-
number alterations by mapping the sCNA loci on to genes, 
with log-ratios  .  0.1 being considered as amplification 
events, while log-ratios , -0.1 being considered as deletion 
events. Both amplification and deletion events mapped to a 
copy-number alteration event represented by “1” in the corre-
sponding binary matrix. Similarly, we incorporated gene-level 
mutation information, with a gene considered mutated if it 
harbors either missense, nonsense single-nucleotide changes, 
insertion/deletions, and frameshift indels. Silent mutations 
were excluded for the purposes of this analysis.

Therefore, both mutation and sCNA data are nS  ×  nG 
binary matrices denoted by [ ]S Gn nX × , where nS is the number 
of samples and nG is the number of genes satisfying two con-
ditions as follows: (i) profiling information is available and 
(ii) they are included in the employed PPI network. We tried 
three different scenarios by incorporating mutation data only, 
copy-number alteration data only, and the combination of 
both. In the later scenario, “1” in the binary data matrix refers 
to copy-number alteration event, a mutation event, or both. 
The data matrix includes binary information for nG  =  9976 

genes and nS = 109 TNBC samples. The TNBCs were iden-
tified using immunohistochemistry data available from the 
TCGA for the tumor samples.40,41

The immune scores are incorporated as a nS × nG column 
vector of continuous-valued immune score denoted by [ 1]Sny × . 
In evaluating each coalition of genes, we are interested in find-
ing how somatic aberrations are associated with the immune 
scores. In this regard, for each coalition, we divide the train-
ing samples into two neutral and impacted cohorts. The first 
cohort includes the sample for which at least one of the genes 
experiences an aberration event, whereas the second cohort 
includes the samples with all genes in their normal situations. 
Therefore, if X is the nS × nG input data matrix (either sCNA, 
Mut, or combination) for nS samples and total nG genes, and 

= …


 1 2 | |{ , , , }
ii i i iG G G  is the coalition of genes in subnetwork 
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In order to evaluate the separation between the two clus-
ters in terms of immune scores y, we use Fisher index:
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where 
ixµ  and 2

ixσ  are, respectively, the mean and variance of 
two cohorts. For this application, we use three different input 
types including (i) sCNA, (ii) Mut, and (iii) sCNA + Mut, 
where in the last scenario “1” means a sCNA event, a muta-
tion event, or both. In this application, we used both network 
expansion and contraction steps.

Figure 4. Survival probability obtained by Kaplan–Meier estimate for the cancer samples clustered using the genes that are selected by (A) best 
classification method (CFS), P-value = 0.018 and (B) optimal network-based random walk method, P-value = 0.08.
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For each scenario, we execute the algorithm for R = 1000 
rounds using randomly chosen seed genes from the pool of top 
100 genes based on their degrees in the PPI network. We also 
tried other initialization methods including top-100 most fre-
quently mutated genes in BRCA and top-100 highly correlated 
genes whose individual mutations divide the samples between 
the two cohorts with the highest Fisher index for their immune 
scores. The numerical results suggest that due to the flexibility 
and mobility of the formed subnetworks by the algorithm, 
which is provided by network expansion and contraction 
steps, the results are not sensitive to the choice of initialization 
method and perform almost equally. However, the proposed 
method provides the desired performance with lower number 
of genes due to the existence of shorter paths from randomly 
selected seed genes to the modulated subnetworks.

The rest of the game-theoretic algorithm parameters are 
set to: maximum number of subnetworks L = 4 resulting in 
N = 5 players including the candidate gene, maximum num-
ber of players in a coalition N ′ = 4, maximum number of total 
collected genes Nmax  =  100, maximum number of collected 
genes in each subnetwork Smax = 50, and maximum number 
of internal iterations NT  =  100. The browsing parameters 
such as minimum improvement that controls adding a node 
to a subnetwork Tadd, minimum performance degradation 
by removing a node from a subnetwork Tremoval, and desired 
performance Accmax that controls the network browsing, and 
stop criterion can be defined in terms of the distance between 
the resulting cohort centers 

1 0
| |X X−µ µ  for the given coali-

tion as well as Fisher indexes Fi(Si). Since the phenotypes 
are continuous-valued immune scores, a natural selection for 
characteristic function is their Fisher index since it reflects 
the separability of clusters obtained based on the mutations 
in the examined gene subnetworks. Considering the range of 
immune scores [-110: 8765], we set these parameters based on 
the cohort center distances as follows: Accmax = 5000, Tadd = 0, 
and Tremoval = -200. Accmax is chosen heuristically considering 
the range of immune scores. Before elaborating on the result-
ing subnetworks, we first evaluate the consistency of the pro-
posed algorithm.

Convergence analysis. In order to evaluate the robust-
ness of the proposed method, we study the consistency of 
results when initialized with different seed genes. In our case, 
the initialization gene pool includes 100 genes, where at each 
run we choose L =  4 seed genes to develop L subnetworks. 

The total number of different seed genes is 
 

= × 
 

6
100

3.9 10 ,L  

therefore, with a high probability, each round of algorithm 
starts with a different seed genes. We are interested in evaluat-
ing how consistent are the results, when starting with different 
seed genes.

Each round of the proposed NBCG algorithm 
provides up to L(r)  L modulated subnetwork with the 
resulting gene set (r) with a total of N(r) = (r)  min  

(L, Smax= Nmax) = Nmax genes. Therefore, the total number of 
genes reported by the algorithm at R rounds is limited to:

= =
= ∑ max 1 max1

( ) ( )RR
r r

k r N r RN� �
�

(7)

Since the ground truth is not known for this application, 
we first rank the set of reported genes based on their 
frequency of appearance in multiple rounds of the algorithms 
and then consider the top-k most frequently reported genes 

{ }=
= ∈∑ 

1
: 1( ( ))R

k r
g g r k�  as the optimal result, where 

1(.) is the indicator function.
For each round of algorithm, nk(r) denotes the number 

of reported genes that are in top-k genes, ie, nk(r)= (r) k. 
These genes are considered consistent. The rest of N – nk(r) 
genes are considered false reports, which are inconsistent with 
the average results obtained by multiple rounds of the algo-
rithm. This is depicted in Figure 5. For instance, the round 
r = 3 corresponds to an algorithm round with poor consistency.

The consistency score of round r denoted by ck(r) is defined 
as the rate of the reported genes that belong to k:

| ( ) | | ( ) |
( )

| ( )| ( )
k k

k

r r
c r

r N r
= =

    

 �
(8)

The average of ck(r) over all R algorithm rounds 

=
= ∑1(ie, ( ))R

k kr
c c r

R 1
 provides the consistency curves that is 

depicted in Figure 6A, where gene acceptance rate is defined 
as k k 

max
| | / | |. The frequency of appearance of top k genes 

in multiple runs of the proposed algorithm is shown in 
Figure 6B, which depicts the frequency of appearance for any 
of the top 100 genes. For instance, the first top genes appear at 
about 50% of the rounds of algorithm (approximately 500 of 
1000). Also, the top-20 genes appear in about 20% of the algo-
rithm runs. Therefore, using only five rounds of the proposed 
algorithm with different initialization ensures capturing of the 
top-20 genes with a high probability. The consistency results 
in Figure 6A and B are valid for the three different scenarios 
using sCNA, Mut, and combined data types.

Association between mutated subnetworks and immune 
scores. Figure 7 represents the obtained results for the mutation 

Figure 5. Each round of algorithm provides up to L subnetworks and a 
total set of genes shown by G(r) with cardinality N(r) = |G (r)|. The resulting 
gene set includes nk(r) = |G(r) ∩ Gk| genes that belong to the top-k gene 
set and considered consistent.
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Figure 6. (A) Average consistency scores of the proposed algorithm using different data types. (B) Frequency of appearance of top-k genes in multiple 
runs of the algorithm.

Figure 7. Developed gene subnetworks using the NBCG algorithm including genes, when mutated, are associated with increased immune cell infiltration 
within tumors. The network starts with four randomly selected hot spot genes including UBC, SMAD1, MEPCE, and TP53 and develop four subnetworks 
that ultimately join each other and form the following connected subnetworks. The size of the nodes represents the frequency of their appearance in the 
reported list for multiple algorithm execution (eg, MDM2 is the most frequently reported gene by different algorithm executions). The intensity of node 
colors refer to their individual associations with the immune scores in terms of Fisher index between the immune scores of two cohorts with and without 
mutations in this specific gene (eg, the gene LPHN1 demonstrates a highest association with immune scores).
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data. Each execution of algorithm provides top modulated 
subnetworks along with the resulting Fisher index for immune 
score between two cohorts, with and without modulated sub-
networks. Then, we report the modulated subnetworks for the 
algorithm round that provides the highest Fisher index.

Given the evidence for convergence of the proposed 
algorithm, we evaluated the biological significance of the 
identified subnetworks. We specifically focused on identifying 
gene subnetworks harboring somatic mutations that are 
associated with high immune infiltration (Fig. 7), given the 
clinical significance of high immune infiltration in TNBCs. 
As shown in Figure 7, we identified a densely connected sub-
network of genes that jointly exhibited a very strong associa-
tion with high immune index (Fisher’s index  =  3.25), with 
TNBC samples harboring mutations in these genes exhibit-
ing significantly higher immune index (differential immune 
index = 4948), as compared with the rest of the cohort. We 
performed pathway enrichment analysis on this gene set 
using the National Cancer Institute’s Pathway Interaction 
Database,42 a curated collection of known biomolecular inter-
actions and key signaling pathways associated with cancer, 
to evaluate if genes belonging to a specific cancer-related 
pathways were enriched within the subnetwork, followed by 
assessment of FDR using the Benjamini–Hochberg FDR43 
methodology. Our analysis revealed significant enrichment of 
ATR signaling (P ,, 10-3; FDR ,, 10-2) and p53 pathways 
(P ,, 10-3; FDR ,, 10-2), pointing to the likelihood that 
TNBC tumors deficient in DNA damage repair mechanisms 
are more likely to trigger enhanced immune surveillance. 
Indeed, mutations in MDM2, CHEK2, and BRCA2, all of 
whom are key players in DNA damage repair were frequently 
identified as significantly associated with differential immune 
index (Fig. 7) by our algorithm. These findings strongly sug-
gest that immune surveillance in TNBC tumors is associated 
with disruptions in DNA repair pathways, a finding consis-
tent with previous reports of increased immune cell infiltrates 
in high-grade serous ovarian cancers harboring BRCA1 or 
BRCA2 mutations.44

However, the immunogenic role of these pathways in 
TNBC has not been previously reported. Additionally, the 
NBCG algorithm also identified aberrations in AKT1 and 
PTEN, both of which belong to the oncogenic PI3K/AKT 
pathway to be associated with increased immune infiltration 
(Fig. 6). Taken together, these novel findings, if confirmed in 
additional studies, would enable the identification of tumor-
specific neoantigens, while also identifying targets for vac-
cines and adoptive immune cell therapies. Furthermore, 
given that multiple trials are ongoing to evaluate the benefit 
of PD-L1/PD-1 blockade in TNBC, our findings could be 
leveraged to identify a mutational signature of benefit from 
immune checkpoint inhibitor therapies.

Furthermore, given that multiple trials are ongoing to 
evaluate the benefit of PD-L1/PD-1 blockade in TNBC, 
our findings, if validated, could be leveraged to identify 

a  mutational signature of benefit from immune checkpoint 
inhibitor therapies.

Conclusions
A novel coalition-based game-theoretic algorithm is devel-
oped using PPI networks to identify gene subnetworks that 
are associated with clinical or biological phenotypes. This 
algorithm implements a novel subnetwork selection mecha-
nism by utilizing two network expansion and contraction 
steps. The proposed NBCG algorithm initiates subnetworks 
from randomly selected or predefined seed nodes and expands 
the subnetworks by collecting nodes from their neighbor-
hoods based on the concept of Shapley value, where the 
subnetworks and the candidate genes are the players of the 
developed coalition game. This approach considers the collec-
tive power of the subnetworks using Shapley value based on an 
application-independent characteristic function. To avoid the 
bias to seed nodes, an additional step of network contraction 
is developed by which the subnetworks remove uninformative 
nodes and thereby are capable of moving away from the seed 
nodes toward more informative network sections, in case the 
originally selected seed nodes are not significantly useful. This 
algorithm is general in the sense that it is capable of identify-
ing subnetworks of connected nodes that maximizes a desired 
objective based on the collective power of the set of selected 
network nodes.

The proposed NBCG algorithm is utilized to find sub-
networks of genes whose profiling information is associated 
with a desired clinical outcome or a biological mechanism. As 
an illustrative example, we employed this algorithm to deter-
mine gene subnetworks whose expression levels are associated 
with progression-free survival in patients with ovarian cancer 
treated with platinum-based chemotherapy. Additionally, we 
employed the NBCG algorithm to identify gene networks 
harboring genomic aberrations that are associated with and 
immune cell infiltration in TNBCs. The proposed method 
improves upon the state-of-the-art feature selection methods 
in identifying the most informative gene sets with the added 
advantage of using PPI networks to identify functionally 
related gene sets that jointly discriminate between pheno-
types. Additionally, this approach takes into account the col-
lective power of subnetworks using the concept of Shapley 
value, as opposed to techniques that grow each subnetwork 
individually.

The aforementioned illustrative applications confirm the 
utility of the NBCG algorithm in identifying subnetworks 
of functionally related genes and proteins that are associated 
with cancer phenotypes, thus enabling the discovery of novel 
biomarkers and therapeutic targets in cancer.
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