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Abstract

In this paper, we develop a distributed mechanism for spectrum sharing among a network of

unmanned aerial vehicles (UAV) and licensed terrestrial networks. This method can provide

a practical solution for situations where the UAV network may need external spectrum when

dealing with congested spectrum or need to change its operational frequency due to security

threats. Here we study a scenario where the UAV network performs a remote sensing mission.

In this model, the UAVs are categorized to two clusters of relaying and sensing UAVs. The

relay UAVs provide a relaying service for a licensed network to obtain spectrum access

for the rest of UAVs that perform the sensing task. We develop a distributed mechanism

in which the UAVs locally decide whether they need to participate in relaying or sensing

considering the fact that communications among UAVs may not be feasible or reliable. The

UAVs learn the optimal task allocation using a distributed reinforcement learning algorithm.

Convergence of the algorithm is discussed and simulation results are presented for different

scenarios to verify the convergence1.

Keywords: Spectrum Sharing, multi-Agent Learning, UAV Networks, reinforcement

learning.

1. Introduction

Unmanned Aerial Vehicles (UAVs) have been recently used in many civilian, commercial

and military applications [23, 22, 15, 4, 8, 2]. With recent advances in design and production

of UAVs, the global market revenue of UAVs is expected to reach $11.2 billion by 2020 [28].

Spectrum management is one of the key challenges in UAV networks, since spectrum

shortage can impede the operation of these networks. In particular, in applications involving

1This material is based upon the work supported by the National Science Foundation under Grant No.
1755984.
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a low-latency video streaming, the UAVs may require additional spectrum to complete their

mission. The conventional spectrum sharing mechanism such as spectrum sensing may not

be very practical in UAV systems noting the considerable required energy for spectrum

sensing or the fact that they cannot guarantee a continuous spectrum access. The property-

right spectrum sharing techniques operate based on an agreement between the licensed and

unlicensed users where the spectrum owners lease their spectrum to the unlicensed ones in

exchange for certain services such as cooperative relaying or energy harvesting.

In this paper, we studied the problem of limited spectrum in UAV networks and consid-

ered a relay-based cooperative spectrum leasing scenario in which a group of UAVs in the

network cooperatively forward data packet for a ground primary user (PU) in exchange for

spectrum access. The rest of the UAVs in the network utilize the obtained spectrum for

transmission and completion of the remote sensing operation. Thus, the main problem is to

partition the UAV network into two task groups in a distributed way.

It is worth noting that cooperative spectrum sharing has been studied previously in the

context of cognitive radio networks [29, 1, 9, 21]. The existing models are mostly centralized

and the set of relay nodes is typically chosen by the PU. Such solutions, however, are

not applicable to UAV networks, due to their distributed infrastructure and autonomous

functionality.

To tackle this problem, we utilize multi-agent reinforcement learning [7, 13, 17, 6, 18,

16, 19], which is an effective tool for designing algorithms in distributed systems, where the

environment is unknown and a reliable communication among agents is not guaranteed. The

main problems in distributed multi-agent reinforcement learning include dealing with state

space complexity and the lack of complete information about other agents. There have been

proposals in the literature to address these issues through message passing or simplifying

assumptions. For instance, [7] assumes that the decision of an agent depends only on a

limited group of other agents, which decomposes the state space and simplifies the problem.

In another work [6], a Bayesian setting is proposed where each agent has some distributional

knowledge about other agents’ decisions. Such simplifications, however, are not applicable

to the distributed UAV network environment.

In this paper, we propose a distributed multi-agent reinforcement learning algorithm for

task allocation among UAVs. Each UAV either joins a relaying group to provide relaying

service for the PU or performs data transmission to the UAV fusion center. In this approach,

each UAV maintains a local table about the respective rewards for its actions in different

states. The tables are updated locally based on a feedback from PU receiver and the UAV

fusion node. We define utilities for both the PU and the UAV network, and the objective is

to maximize the total utility of the system (sum utility of the PU and the UAV network).
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We discuss the convergence of our learning algorithm and we present simulation results to

verify the convergence to the optimal solution.

The remainder of this paper is organized as follows. In Section 2, the system model and

the assumptions of the proposed model are described. In Section 3, we propose a distributed

multi-agent learning algorithm to solve the spectrum sharing problem. In Section 4, we

present simulation results and discuss the performance of our distributed learning algorithm.

Finally, we make concluding remarks in Section 5.

2. System Model

We consider a licensed primary user (PU) who is willing to share a part of its spectrum

with a network of UAVs, in exchange for receiving a cooperative relaying service. The UAV

network consists of N UAVs which can be partitioned into two sets depending on the task

of the UAV. In fact, UAVs either relay for the PU or utilize the spectrum to transmit their

own packets to the fusion center. Let K be the number of nodes who perform the relaying

task and N −K denote the number of UAVs that transmit packets to their fusion center.

In this paper, we assume that both the PU’s transmitter and receiver are terrestrial, while

UAVs are operating in high elevation. Also, we assume no reliable direct link exists between

the PU’s transmitter and receiver. Moreover, there is zero chance for direct transmission

between the UAVs’ source and fusion, due to their distances from the fusion center. Fig.

1 illustrates a sample scenario with 6 total nodes, where the nodes are partitioned into a

set of 4 relay nodes for the fusion center, and 2 other nodes relay information for the PU

receiver on the ground.

The PU’s transmitter intends to send its packet to a designated receiver, which is far

away from its location. Hence, a single or a number of UAVs are required to deliver its

information to the receiver. In addition, we assume that the UAVs’ spectrum is congested

or unreliable, therefore the UAVs are required to lease additional spectrum from the PU

to communicate with their fusion. By delivering the PU’s packet, the UAVs gain spectrum

access to send their own packets. All the UAVs transmitters and receivers are assumed

to be equipped with a single antenna. Also, we assume that the channels between UAVs,

source, fusion, and PU transmitter and receiver are slow Rayleigh fading with a constant

coefficient over one time slot. The channel coefficients are defined as follows: i) hPT,Ui
refers

to the channel parameters between the PU’s transmitter and ith UAV; ii) hUi,PR denotes

the parameters between the ith UAV and the PU’s receiver; iii) hS,Ui
and hUi,F , respectively

denote the channel coefficients between the Source and the ith UAV, and between the ith

UAV and the fusion center. For the sake of simplicity, the instant Channel State Information
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Figure 1: System Model: A sample Scenario with 6 UAVs, where four UAVs handle packets relaying between

the Source and Fusion Center and two UAVs relay packets for the Primary User.

Figure 2: Communication channels for a single relay

(CSI) are assumed to be available for all UAVs following similar works in [30, 32, 5, 3, 26]

The source of the noise at the receivers is considered as a symmetric normally distributed

random variable, denoted by z ∼ CN(0, σ2). Many works such as [24, 20, 26] optimized the

power consumption and nodes’ lifetime in this area. On the other hand, power optimization

is not the purpose of this work, hence we assume constant powers during the transmissions.

However, the transmission power for the Source and the PU transmitter is less than those

of the UAVs. Half-duplex strategy is utilized in this work. Without loss of generality, time-

division notations are characterized in order to ensure the half-duplex operations. After

these assumptions, the channel and system model for a single relay is shown in Fig. 2. In

this model, all UAVs and terminals utilize a single antenna for transmission.

In the first half of a transmission cycle, the source transmits its packet and the relay
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UAVs receive the information. The channel model for the first half is presented as follows:

yU [n] = hS,UxS[n] + zr[n], (1)

where xS is the source’s transmitted signal and yU is the UAV’s received signal. Then, in

the second half of the transmission, the UAV sends the received packet in the previous time

slot. We can write the second half as another model for the received signal as follow:

yF [n] = hU,FxU [n] + zF [n], (2)

where xU is the UAV’s transmitted signal and yF is the destination’s received signal.

In equations (1) and (2), the CSI parameters hij represent the effects of the path loss

and likewise zj represents the effect of noise and interference terms at the receiver, where

i ∈ {Source,PU-Transmitter,UAV} and j ∈ {Fusion,PU-R,UAV}. In our scenario, hij is

calculated by the proper receiver.

Based on equations (1) and (2), the throughput capacity of the non-degraded discrete mem-

oryless broadcast channel is expressed in (3) [33]:

CThroughput = max
w→x→yd

{I(w; yd)}, (3)

where d ∈ {Fusion,PU-Receiver}, w is the message word and x is the codeword which has

been assigned to each message by the encoder. Preferably, equation (3) should be solved

for the optimal joint distribution of both w and x. However, as discussed in [25], we can

achieve the suboptimal throughput rate in (4), with the aid of assumption x = w. Also,

p(x) denotes the probability mass function (pmf) for the codeword.

RThroughput = max
p(x)
{I(x; yd)} (4)

In scenarios, where users can exploit the existence of UAVs, different cooperation protocols

such as Decode and Forward (DF) and Amplify and Forward (AF) can be used [12]. The

idea behind the concept of cooperative relaying is that a set of relay nodes decode, amplify

and collectively “beam-form” the signal received from the source node (potentially with

help of source node itself) towards a designated destination in order to exploit transmission

diversity and increase the overall throughput of the system [14].

Considering an AF cooperation, each UAV first amplifies the signals from the source and then

cooperates with source to send its information to the fusion center or to the PU-Receiver.

According to [11], the mutual information for i) the first set of source, UAV, fusion and ii)

the second set of PU-T, UAV, PU-R can be written as equations (5) and (6), respectively.
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In these equations, PS denotes the transmitter power from the source of the UAV network

and i specifies the index for the UAV.

ISFAF
= log2(1 + PS|hSF |2 (5)

+
PS|hS,Ui

|2 PUi
|hUi,F |2

1 + PS|hS,Ui
|2 + PUi

|hUi,F |2
)

IPU(TR)AF
= log2(1 + PPT |hPT,PR|2 (6)

+
PPT |hPT,Ui

|2 PUi
|hUi,PR|2

1 + PPT |hPT,Ui
|2 + PUi

|hUi,PR|2
)

We denote the throughput rate for both primary users and source-fusion users as (7) and

(8), respectively.

RPU = IPU(TR)AF
(7)

RSF = ISFAF
(8)

It is noteworthy that these equations are valid only for cooperation with a single Relay

or UAV. However, the objective of this paper is dealing with Multi-UAV or Multi-Agent

relays. Fig. 3 demonstrates the distribution of N UAVs into two groups including K UAVs

facilitating the air source-to-fusion communication and N − K UAVs providing relaying

service for a ground-based primary transmitter-receiver pair. Hence, the equations for multi-

UAV should be changed to (9) and (10). In (9), i defines the lower bound for the first UAV

in the source-fusion pair and i+N −K denotes the upper bound.

RSF (Multi-UAV) = log2(1 + PS|hSF |2 (9)

+
i+N−K∑

j=i

PS|hS,Uj
|2 PUj

|hUj ,F |2

1 + PS|hS,Uj
|2 + PUj

|hUj ,F |2
)

Here, RSF (Multi-UAV) is the achievable rate for the fusion center. This rate is achieved

with the help of (N − K) UAVs. PS and PUi
are transmission powers for the source and

the ith UAV, respectively. Also, hSF denotes the channel coefficient for the pair of source-

fusion center, hS,Uj
stands for the channel between the source and jth UAV, and finally hUj ,F

denotes CSI for the jth UAV and the fusion. In (10), m and m + K define the lower and

upper bound for the first and last UAV in the source-fusion pair respectively.

RPU(Multi-UAV) = log2(1 + PPT |hPT,PR|2 (10)

+
m+K∑
l=m

PPT |hPT,Ul
|2 PUl

|hUl,PR|2

1 + PPT |hPT,Ul
|2 + PUl

|hUl,PR|2
)
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Figure 3: System Model: Dividing UAVs into K and N −K groups, for cooperating in two sets of Source-

Fusion and Primary Transmitter-Receiver.

In (10), RPU(Multi-UAV) is the achievable rate for the primary transmitter-receiver pair

with the aid of K UAVs. PPT and PUl
are transmission power for the primary user and

the ith UAV, respectively. Moreover, hPT,PR, denotes the channel coefficients for primary

transmitter and receiver. hPT,Ul
stands for the primary transmitter and lth UAV. Finally

hUl,PR is CSI parameters for the lth UAV and the primary receiver. Based on the assumption

of long distance between the source and the fusion center and also the long distance between

the primary transmitter and receiver, we can assume that hSF and hPT,PR are negligible.

Time is slotted and at the end of each time slot, the fusion center and the primary

receiver send feedback to the UAVs informing them about the achieved accumulated rates.

This information is used by each UAV to decide on joining a task group. The goal is to find

the optimal task allocation for UAVs in a fully distributed way such that the total utility of

the system (i.e. sum utility of UAV network (9) and the PU (10)) is maximized. We assume
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that the UAVs decide locally with no information exchange among themselves.

It is noteworthy that in some cases, the maximum throughput is achieved when all

UAVs join the same set and deliver packets only for one set, which is not consistent with

the proposed model. If all UAVs are distributed in the set of source-fusion, then the total

throughput rate is zero because there is no available spectrum for UAVs to utilize for their

transmission. Also, if all UAVs are partitioned in the primary set, then the sum throughput

rate is equal to the rate of the primary user. In this case the proposed method handles

this issue by considering the Jain fairness index [10]. Based on the fact that we only have

two sets and based on the Jain index definition, (11) describes the fairness for the proposed

method in our system model.

J(x) =
1

n
× (
∑

i xi)
2∑

i x
2
i

, (11)

Here, n is equal to 2 and i ∈ {0, 1} which indicates the set of source-fusion or Primary Users.

We assume that x0 and x1 are equal to the number of UAVs in the Fusion-Source set and

the Primary Users set, respectively. Therefore, we can define the fairness as (12).

Fariness =
1

2
× (#UF + #UP )2

(#UF )2 + (#UP )2
(12)

Now, if all UAVs are distributed in one set, then the fairness will be minimum (0.5), and if

the UAVs are partitioned equally among two sets, then the fairness will be maximum (1).

Based on these definitions, we define (13), as the gain value for each time slot which

indicates the efficiency and performance for the distributed UAVs in two sets.

Gain = γ1 ×∆(RateFusion) (13)

+ γ2 ×∆(RatePrimary) + γ3 × (Fairness)

In (13), ∆(RateFusion) is the difference between the rate at time t and the average of

previous rates for the fusion center and ∆(RatePrimary) is the difference between the rate at

time t and the average of previous rates for the primary user. Also, γ1, γ2, and γ3 are defined

to control the gain value. Then, we use this gain in our proposed method as described in

section 3.

3. The Distributed Learning Algorithm for Task Allocation

The proposed method is a general form of the Q-learning algorithm [31] for a distributed

multi-agent environment.
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Let ait denote the action chosen by UAV i at time t, and let Ai denote the set of all

possible actions for UAV i. We consider two possible actions for a UAV that correspond

to either joining the relaying task group or the fusion task partition. Therefore, the set of

possible actions are identical across UAVs. We denote the action vector of UAVs at time t

by ut = (a1t , a
2
t , · · · , aNt ), and we refer to the set of all possible action vectors by U . There

is a finite set of states S, where state s ∈ S corresponds to the current task partition. A

deterministic transition rule δ governs the transition between states, i.e. δ : S × U → S.

The reward function r maps the current state and action vector to a real value, that is

r : S × U → R. At the beginning of each time step, the UAVs observe the current state

(this information is obtained by the feedback from the previous step). Then, each UAV

independently decides on its action (i.e. which task group to join) without knowing any

information about actions of the other agents. The rewards associated with the UAVs’

actions are computed by the PU receiver and the UAV fusion. The reward is basically the

gain obtained from the task partitioning, taking into account the utilities of the PU and the

UAV network. After the reward is calculated, a feedback message from the PU receiver and

the UAV fusion is broadcasted to the UAVs. This feedback message contains the reward

and the current task partitions.

The feedback information is used to update and maintain local Q-tables at each UAV. A

Q-table basically represents the quality of different actions for a given state. For instance,

qit(s, a) denotes the quality of action a at state s for UAV i at time t. Individual Q-tables are

updated as follows. At first, the tables are initialized with qi0(s, a) = 0. Then, the following

equation is used to update the Q-tables:

qit+1(s, a) =



qit(s, a), if s 6= st or a 6= ait,

(1− α) qit(s, a)+

α ·
(
rt + β ·maxa′∈Ai qit(δ(st, ut), a

′)
)
,

otherwise,

(14)

where 0 ≤ α < 1 is the learning rate, rt is the reward or the gain obtained at time t, as

defined in the system model, and 0 ≤ β < 1 is the discount factor to control the weight of

future rewards in the current decisions.

The main idea is that in our distributed environment, the UAVs are unable to keep a

global Q-table, corresponding to the current action vectors, i.e. Q : S × U → R. Instead,

each UAV i keeps a local (and considerably smaller) Q-table which cares about its own
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current action, i.e. qi : S × Ai → R. This approach significantly reduces the complexity

of the algorithm and eliminates the need for coordination (or sharing information) with

other UAVs at the time of decision making. However, we need a projection method that

compresses the information of the global Q-table into the local small tables.

The results in [13] prove that in a deterministic multi-agent Markov decision process

and for the same sequence of states and actions, if every independent learner chooses locally

optimal actions, the result would be the same as choosing the optimal action from a global

table. We utilize this result and consider an optimistic projection method that assumes each

UAV chooses the maximum quality action from its local table. This reasonable assumption

is a necessary condition for the optimality of the learning algorithm. It is worth noting that

the existence of a unique optimal solution is the sufficient condition for the optimality of

this algorithm. It means that there should be a unique task partition, which results in the

maximum total utility. If multiple task partitions yield the maximum utility, it is possible

that the UAVs act optimally and choose the optimal actions in their local Q-tables, but

the combination of their actions may not be optimal. In this case, message passing among

UAVs is needed as they need to coordinate decisions at every step.

It should also be noted that in learning algorithms we need a balance between exploring

new actions and exploiting the previously learned quality of actions. Therefore, a greedy

strategy that always exploits the Q-table and chooses the optimal action from the Q-table

may not provide enough exploration for the UAV to guarantee an optimal performance. A

very common approach is to add some randomness to the policy [27]. We use ε-greedy with

a decaying exploration, in which a UAV chooses a random exploratory action at state s with

probability ε(s) = c/n(s), where 0 < c < 1 and n(s) is the number of times the state s

has been observed so far. The UAV exploits greedily from its Q-table with probability of

1− ε(s). In this approach, the probability of exploration decays over time as the UAVs learn

more.

Similar to the original Q-learning for a single agent environments, the proposed learning

algorithm converges if the state-action pairs are observed infinitely many times. Also, the

time complexity of the algorithm is in the order of O(|S| × |Ai|), where |S| is the size of the

state space, and |Ai| is the size of action space for UAV i. Since there are only two possible

actions in our application, the complexity can be expressed as O(|S|). In terms of space

complexity, each UAV i needs to keep a table of size |S| × |Ai|.
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Figure 4: Topology for 2 UAVs in a 100 x 100 mission area.

4. Simulation Results

In this section, we present the simulation results to evaluate the performance of the

proposed method. We simulate our system model for a ground-based primary transmitter-

receiver pair along with the pair of source and fusion for the UAV network. The location

of primary users, source and fusion are fixed during the simulation. However, the UAVs are

distributed randomly in the environment. The channels between nodes i and j are obtained

from hi,j ∼ CN(0, d−2i,j ), where di,j is the distance between nodes i and j. The duration of

one time slot, T , is assumed to be equal to 1. The values of γ1 , γ2 and γ3 are set to 2, 2

and 0.4, respectively.

Scenario I: 2 UAVs

In the first scenario, we consider two UAVs to be partitioned into two task groups. The

network topology for this scenario is demonstrated in Fig. 4. Since in this scenario we

only have 2 nodes, the possible states for task allocation is equal to 22 = 4. Hence, the

Q-tables will be learned after a few iterations. Fig. 5 illustrates the summation of the

obtained throughput. The convergence to the optimal task allocation occurs after the 35th

iteration, since the number of states is relatively small. The matrix below shows the final

task allocation values for these UAVs. [
0 1

]
11



Figure 5: Sum Rate for 2 UAVs for 100 iterations

In this notation, 0 corresponds to the set of source-fusion and 1 means the set of the primary

users. UAV1 who has a lower relative distance to the source-fusion, is allocated to the fusion

set, while UAV2 is allocated to the another set to relay for the primary network.

Scenario II: 6 UAVs

In this scenario, we consider 6 UAVs to show that the convergence of the proposed method

is achieved after more iterations compared to the case of 2 UAVs in the first scenario, since

the number of states with 6 nodes is equal to 26 = 64. This means, at least 64 iterations are

required for the algorithm to just test all the states.

Fig. 6 demonstrates the network topology with these 6 UAVs for the primary user and

the fusion. As we can see in Fig. 7, the convergence to the best task allocation occurred

after 240 iterations. This implies that the more UAVs are added to the model, the more

iterations will be taken to the convergence epoch. Moreover, Fig. 8 shows the number

of UAVs switching their actions (i.e. task partitions) in this scenario. After the 240th

iteration, when the convergence happens, we see that no UAV changes its task partition,

and the number of switches stays at zero.

Also, task matrix shown below denotes the final task allocation for the 6 UAVs.[
1 0 1 0 0 1

]
12



Figure 6: Topology for 6 UAVs in 100 x 100 simulation field

Based on this matrix, UAVi; i ∈ {2, 4, 5} are considered for the set of source-fusion and the

rest of UAVs are assigned to the relay task group for the primary network. This allocation

makes sense considering the location of UAVs and their relative distances.

5. Conclusion

In this paper, we studied the task allocation problem for spectrum management in UAV

networks. We considered a cooperative relay system in which a group of UAVs provide

relaying service for a ground-based primary user in exchange for spectrum access. The

borrowed spectrum is not necessarily used by the relay UAV, rather is used by other UAVs

to transmit their own information to a fusion center. This makes a win-win situation for

both networks. We defined utilities for both the UAV network and the ground-based primary

network based on the achieved rates. Next, we proposed a distributed learning algorithm

by which the UAVs take proper decisions by joining the relaying or fusion task groups

without the need for information exchange or knowledge about other UAV’s decisions. The

algorithm converges to the optimal task partitioning that maximizes the total utility of the

system. Simulation results were presented in different scenarios to verify the convergence of

the proposed algorithm.
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Figure 7: Sum Rate for 6 UAVs for 1000 Iterations
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