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Abstract: Intensive Care Units (ICUs) are equipped with many sophisticated sensors and monitoring
devices to provide the highest quality of care for critically ill patients. However, these devices might
generate false alarms that reduce standard of care and result in desensitization of caregivers to
alarms. Therefore, reducing the number of false alarms is of great importance. Many approaches
such as signal processing and machine learning, and designing more accurate sensors have been
developed for this purpose. However, the significant intrinsic correlation among the extracted
features from different sensors has been mostly overlooked. A majority of current data mining
techniques fail to capture such correlation among the collected signals from different sensors that
limits their alarm recognition capabilities. Here, we propose a novel information-theoretic predictive
modeling technique based on the idea of coalition game theory to enhance the accuracy of false alarm
detection in ICUs by accounting for the synergistic power of signal attributes in the feature selection
stage. This approach brings together techniques from information theory and game theory to account
for inter-features mutual information in determining the most correlated predictors with respect
to false alarm by calculating Banzhaf power of each feature. The numerical results show that the
proposed method can enhance classification accuracy and improve the area under the ROC (receiver
operating characteristic) curve compared to other feature selection techniques, when integrated in
classifiers such as Bayes-Net that consider inter-features dependencies.

Keywords: false alarm reduction; intensive care units; feature selection; coalition game theory;
Banzhaf power

1. Introduction

As there is no single sensor/device capable of complying with all clinical requirements,
multiple therapeutic and monitoring devices are often deployed in the Intensive Care Units (ICUs)
to collect real-time data for diagnosis, prognosis, treatment and more generally, patient monitoring.
These devices generate visual and acoustic alarms to inform nurses and physicians about changes in a
patient’s condition or a failure in device functionality [1]. However, the rate of false alarm generation
is too high, which can result in disrupting the monitoring procedure in severe situations, alarm fatigue
and desensitization of clinical staff to the alarms and hence cause ignorance or delay in reaction to true
alarms [2,3]. As reported in [4,5], caregivers are usually overwhelmed with 350 alarm conditions per
patient per day, of which 80–99% are meaningless or false [6–8]. Therefore, false alarms are considered
the top hazard imposed by the use of medical technologies [9–11].
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A false alarm might happen due to the low quality of signals [2] as a result of several factors such
as noise, motion artifacts, missing data, and technical defects. Various methods have been proposed
to reduce false alarms [1,12–18], which can be generally classified into learning and non–learning
methods. In the learning category, a labeled dataset is usually available and a set of features is
extracted from the dataset to train a model using a portion of the dataset. Then, this model is tested
and validated using a validation technique. Imhoff et al. [1] have reviewed a number of learning and
statistical approaches and discussed their potential use for clinical applications, particularly, false alarm
reduction. Behar et al. [17] have designed a support vector machine (SVM)-based method to estimate
the quality of an electrocardiogram (ECG) segment using signal quality indecies (SQIs). SQIs are used
to assess the quality of a signal or its level of noise. This model could reduce the number of false
alarms as it can eliminate low quality ECG segments with high accuracy. Gambarotta et al. [2] have
reviewed the techniques on quality scoring of ECG and arterial blood pressure (ABP) signals and also
surveyed the algorithms that exploits the relationship among ECG, ABP and photoplethysmogram
(PPG) to reduce the false alarm rate. Among the learning methods proposed in the literature,
they referred to SVM, multilayer perceptron (MLP), naive Bayes and linear discriminant analysis
(LDA). Ansari et al. [16] performed band-pass filtering on ECG and pulsatile signals and also trend
estimation on ECG signals. They applied different QRS-complex detection methods and classified
beats using a decision tree approach. Finally they developed another decision tree classifier to classify
true and false alarms. Antink et al. [13] applied band-pass filtering, peak detection, fast Fourier
transform (FFT), principle component analysis (PCA), and some statistical analyses and extracted a
number of features to train machine learning methods. They applied four classifiers: random forest,
SVM binary classification decision tree and regularized linear discriminant analysis for classifying
alarms. Zhang and Szolovits used ECG, plethysmography, blood pressure, venous and arterial
oxygen saturation and oxygen perfusion as features and trained a classification tree and also artificial
neural networks to classify the alarms. They showed that training with eight hours of the data can
result in better performance compared with standard thresholding methods [19]. Li and Clifford [18]
extracted 147 features and SQI metrics from ABP, ECG, Spo2 and PPG and trained a random forest
classifier. They used the 10-fold cross validation technique and achieved the sensitivity of 100% and
specificity of 24.5%. Salas-Boni et al. [20] used ECG signal and applied wavelet transform to extract
the features. They developed a logistic regression classifier using L1-regularized and achieved a false
alarm suppression of 25.5% without suppressing true alarms.

Among the non–learning methods, we can refer to the method proposed in [21]. In this method,
a wavelet transform is applied to the ECG signal to remove its noise. Then, the quality of vital signals
(ECG and ABP) in intensive care patients is measured using SQIs. After that the combination of SQI,
Heart Rate Variability (HRV) and ABP is used for the judgment of false alarms. Delayed activation
of alarms is another simple approach to decrease the false alarms [6,22,23]. Scmid et al. [22] and
Teo et al. [24] used ECG, ABP and PLETH signals and designed a majority voting approach with a
fixed threshold to determine if an alarm is true or not. Aboukhalil et al. [15] used a database of MIMIC
II to analyze five types of ECG arrhythmia. They developed an algorithm based on the morphological
and timing information of ABP signal and achieved the false alarm suppression rate of up to 42.7%.
Li and Clifford [25] proposed an SQI to assess the quality of ABP signal and reject the noisy ones.
They estimated the ABP-derived HR and compared it with the monitor’s HR threshold and rejected
the false HR-related arrhythmia. They could reduce the false alarm rates of extreme bradycardia and
extreme tachycardia to 74.13% and 53.81%, respectively.

One of the challenges facing the above mentioned methods is that features whose impact on the
model performance is individually low might be excluded in the feature extraction phase, while their
combination with other features could improve the overall performance. These methods consider
either the effect of each feature by itself on the target or the inter-feature mutual information to improve
the performance. Therefore, the features relevant to the target class might be discarded if they have
high correlation to the already selected features.
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To suppress the false alarm in ICUs, here we develop a new coalition game-theoretical model
based on Banzhaf power index that accounts for interdependency among the extracted features and their
relevancy to the target class. Coalition game theory has been recently employed in the feature selection
stage of machine learning approaches to improve their performance, where features are modeled as
game players [26–31]. In the majority of these existing game-theoretical approaches, the importance of
features on classification accuracy is measured by Shapley value. The Shapley value of a feature shows
the contribution of the feature in improving the accuracy of classification when all possible coalitions of
features with any arbitrary size are considered. While this method can have a considerable impact on
capturing the higher-level correlation among features (e.g., more than mutual correlation between two
features), it involves a high computational complexity to calculate this factor for all possible groupings
of the features, in particular in the presence of a large number of features. In [27], we utilized a game
theoretic feature selection method based on Shapley value to select a combination of features that
enhance the hemorrhage severity prediction over a heterogeneous data set to predict. We considered
all possible coalitions of size 4–10 due to intractable computational complexity of calculating Shapley
value over larger coalitions and computed the importance of each feature using multi-perturbation
Shapley value.

In [29], we studied the problem of false alarm reduction in ICUs, where three main signals;
electrocardiogram (ECG), plethysmogram (PLETH), arterial blood pressure (ABP), were used to
classify alarms to false and true. In the first stage, we calculated wavelet coefficients at different levels
of decomposition for each of the mentioned signals. Then, we extracted a number of statistical and
information theory-based features from the coefficients of wavelets at each level. A Shapley value-based
feature selection approach was utilized to reduce the possibility of removing high-impact features that
are highly correlated with other selected ones. While the Shapley value was only calculated for small
size coalitions, the feature selection method still involved a considerable computational complexity.
More importantly, considering smaller coalitions of features resulted in reducing the accuracy of the
alarm detection model. To address these challenges, in this paper, we propose a new game-theoretic
feature selection method based on utilizing Banzhaf power to declare salient features with comparable
accuracy but much less complexity. This metric is proportional to the number of times that a feature is
a critical player for a coalition. In the proposed model, we define an information-theoretic notion for
Banzhaf power, where a feature is determined to have a critical impact on a set of features if it increases
the relevancy of the selected feature set on a target class and also is interdependent on more than half
of the members in the set. The numerical results validate the desirable performance improvement of
this method in reducing the false alarm rate compared to existing feature selection techniques when a
classification method that has the capability of considering inter-features dependencies is utilized.

The rest of this paper is organized as follows. List of the abbreviations used in this paper is
presented in Section 5. In Section 2, an introduction to the data set studied in this work is provided.
Section 3 describes the proposed feature extraction techniques and signal analysis. The proposed
coalition-based game theoretic feature selection method based on Banzhaf power is presented in
Section 4. In Section 5 we present the results of numerical analysis and finally conclusion remarks are
given in Section 6.

2. Description of Data Source

In this work, we use the publicly available Physionet Challenge 2015 database [32,33].
Four hospitals in the USA and Europe have been involved in producing the database. The definition
of the alarms is presented in Table 1 [32]. Measurement for three vital signals of ECG-II, APB, and
plethysmogram (PLETH) are utilized where each alarm is labeled as true, or false. Each alarm was
reviewed by a team of experts and at least two of them agreed on the alarm type. These alarms are
assumed to be at least 5 min apart and are triggered 5 min from the start of each record while the onset
of the events is within 10 s of the alarm (i.e., between 4:50 and 5:00 of the record). The PhysioNet
challenge-2015 dataset includes a training dataset containing the recordings for 750 patients, and a test
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dataset containing the recordings for 500 patients. It is worth mentioning that the test dataset is not
publicly available and we only had access to the training dataset. Out of 750 recordings in training
dataset, only 220 samples include all three signals of ECGII, plethysmogram (PLET) and ABP that
were used in this study. The resolution and frequency of each signal are 12 bit and 250 Hz, respectively.
Furthermore, each signal has been filtered by notch filters and a finite impulse response (FIR) band
pass (0.05 to 40 Hz). The signals might suffer from movement artifact, sensor disconnects, interference
from pacemakers and other events.

Table 1. Alarms definition [32].

Alarm Type Definition

Asystole No heartbeats for at least 4 s
Extreme Bradycardia Heart rate less than 40 bpm for 5 consecutive beats
Extreme Tachycardia Heart rate higher than 140 bpm for 17 consecutive beats

Ventricular Tachycardia At least 5 ventricular beats with heart rate higher than 100 bpm
Ventricular Flutter/Fibrillation Fibrillatory, flutter, or oscillatory waveform for at least 4 s

3. Signal Analysis and Feature Extraction

Extracting relevant features from the entire time-series signals is a key step in detecting the false
alarms, as considering the original signals results in a large number of highly correlated features
compared to the sample size that increases the chance of over–fitting the model to the training data.
Here, we apply discrete wavelet transforms (DWT) on ECG, ABP and PLETH signals. This method is
utilized as it can separate details in signals compared to other transforms and it can eliminate the noise
with a low distortion rate. The DWT’s capability to detect specific time-frequency components of ECG
signals has motivated several researchers to utilize this method in several related applications [34–36].

This transform performs an adaptive time-frequency decomposition of patterns in a signal.
Moreover, the signal can be represented by a few wavelet coefficients and hence less features can be
extracted from a signal.

A set of dilated-translated wavelets, ψa,b, can be defined as: [37]. DWT components are shifted
and scaled versions of the mother wavelet defined as:

ψa,b(t) =
1√
a

ψ(
t− b

a
) (1)

where a, b are scale/dilation and shift/translation parameters, respectively. There are a number of
wavelet functions with different characteristics such as symmetry, vanishing moment and so on that
can be used as the ψ function. Here we choose Daubechies wavelets class D− 2N for analyzing the
signals defined as:

ψ(t) =
√

2 ∑
k
(−1)kh2N−1−k × φ(2t− 1), (2)

φ(t) =
√

2 ∑
k

hk × φ(2t− k)

In Equation (2), h is a high pass filter. When this filter is convolved with a signal at low scales,
the output is called an approximation set of the signal. Convolving a low–pass filter, gk = h2N−1−k,
at high scales generates another set called detail coefficients. Decomposing a signal to approximate and
detail coefficients can be done again depending on how much detail is required. Approximate and
detail coefficients can be obtained respectively from Equations (3) and (4)

ai(t) = ∑
k

ai−1(t)h2t−k (3)
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di(t) = ∑
k

ai−1(t)g2t−k (4)

In Equations (3) and (4), a−1 shows an input signal (i.e., ABP, ECG, or PLETH). We show the
calculated coefficients as X = [E1, ..., El , A1, ..., Al , P1, ..., Pl ], where l shows the decomposition level.
Ei, Ai and Pi, show both detail and approximate wavelet coefficients for ECG, ABP and PLETH signals
respectively. For the detail coefficients i = l, and for the approximate coefficients i 6= l.

Here we calculate wavelet coefficients at 6 levels (i.e., l = 6) and use Daubechies-8 (db8) for
analyzing ECG signals and Daubechies 4 for analyzing ABP and PLETH signals. The reason that we
choose these wavelets is because of having a good match between the shape of those signals and the
corresponding wavelets.

The entire 5-min recordings of these signals are used to calculate the DWT, since higher-order
wavelet transforms using short signal duration does not provide informative features.

Here, we extract information–theoretic and statistical features from the wavelet coefficients as
mentioned in Table 2 instead of using all the coefficients that might result in over-fitting. For computing
information-theoretic properties such as entropy, we first discretized the coefficients using quantization
levels obtained from Lloyd’s algorithm [38] and then used the empirical distribution as an estimate for
the unknown probability distribution from which the coefficients are derived.

Table 2. Information-theoretic and statistical features of wavelet coefficients.

No. Feature No. Feature No. Feature

1 mean 8 std (σ) 15 Interquartile
2 mode 9 µ3 Range
3 median 10 µ4 16 Shannon Ent.
4 max 11 coef. of var 17 Log Eng.
5 min 12 kurtosis 18 nT(max{Xi}/2)

6 range 13 skewness 19 nT(
√

∑ X2
i )

7 variance 14 H mean 20 nT(5
√

∑ X2
i )

Coef. of var: coefficient of variation; Shannon Ent.: Shannon entropy ; Log Eng.: Log. Energy

The first 10 features in Table 2, are typical statistical properties of the signal. Also, µ3 and µ4 are
respectively the 3th and 4th standardized sample moment calculated as:

µn =
ΣN

i=1(Xi − X̄)n

N
(5)

where X̄ =
ΣN

i=1Xi
N , and X1, . . . , XN are the Nth coefficients associated with each signal. Kurtosis,

defined as κ(X) = µ4(X)
σ4(X)

, is the standardized fourth population moment about the mean measuring the

peakedness of distribution. Skewness, defined as λ(X) = µ3(X)
σ3(X)

, shows how symmetric a distribution

is around zero. Furthermore, Harmonic mean or H mean is defined as N
∑N

i=1 1/Xi
. Interquartile range is

computed based on the difference between the 25th and 75th percentiles. Shannon entropy of energy,
calculated as H(X2) = −∑N

i=1 X2
i log2 X2

i , shows the entropy of the energy of the coefficients and Log
energy is defined as ∑

i
log X2

i . Finally, nT(α) shows the number of wavelet coefficients larger than α.

nT(α) =
N

∑
i=1

1(|Xi| > α) (6)

where, 1(.) shows the indicator function. These features collectively capture the properties of the signal
at different decomposition levels and are used as input for the proposed feature selection method.
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4. Proposed Coalition Game-Theoretic Feature Selection Method

In this section, we first briefly describe the coalition game theory and then present the proposed
feature selection method using Banzhaf power. Coalition game or cooperative game refers to a class of
game theoretical approaches that study the set of joint actions taken by a group of players. This is
different from non-cooperative games in which players act individually [39–41]. Outcome of a coalition
game is defined by how players form coalitions and how the coalition payoff is divided among
its members [42].

A coalition game can be defined with a pair of (N , v), where N = {F1, F2, . . . , Fn} is the set of
players with cardinality of n (i.e., |N | = n). The characteristic function, v, is a function representing
the total payoff gained by the members of this coalition and is defined on the set of all coalitions,
v : 2N → R. We use transferable utility coalition (TU-coalition) game for which the following
conditions hold for the characteristic function, v.

1. v(φ) = 0 where φ an empty coalition.
2. v(Si ∪ Sj) ≥ v(Si) + v(Sj) where Si and Sj, (Si,Sj ⊆ N ) are two disjoint coalitions.

Different solutions have been defined to measure the role (importance) of a player in a transferable
utility coalition game including Shapley value [43], Banzhaf power [44], and Banzhaf value [45]. In our
proposed feature selection method, the importance of the features is measured using Banzhaf power.
To define this metric, we first need to introduce the concept of simple game.

A simple game refers to a class of coalition games with characteristic function satisfying the
following conditions [46].

1. v(S) ∈ {0, 1}, For all S ⊂ N ,
2. v(φ) = 0, v(N ) = 1, and
3. For S , T ⊂ N , if S ⊂ T , then V(S) ≤ v(T ) (monotonicity).

Based on the first property, the coalitions are divided into two sets of winning coalition,
W(v) = {S ⊂ N | v(S) = 1} and losing coalition defined as L(v) = {S ⊂ N | v(S) = 0}. In these
games, a player Fi is called a swinger if the removal of this player from a winning coalition S converts
it to a losing coalition, meaning that v(S) = 1 and v(S\{Fi}) = 0.

The Banzhaf power for player Fi, βi(v) represents the fraction of times that player has a critical
role in converting a losing coalition to a wining one and is defined as the expectation of player Fi to be
a swinger in a simple game model assuming that formation of all coalitions are equally probable as
defined below,

βi(v) =
ηi(v)
2n−1 (7)

where ηi(v) counts all coalitions for which the player Fi is a swinger (i.e., {S : S ⊂ N \{Fi}, ν(S ⋃{Fi})−
ν(S) = 1}).

Next, we discuss our proposed coalition-based feature selection method, in which the features
are considered as the players of the game, and the v function is calculated based on its members
(features)’s contribution to the classifier performance. We measure the contribution of each feature in
the game noting all possible coalitions of the players using Banzhaf power. The criterion to determine
the most informative subset of features is the relevance of this set to the target class as well as the
interdependence among the group members. If the relevance of the feature Fi on target class C, R(Fi; C)
is defined by their mutual information, R(Fi; C) = I(Fi; C), the relevance of coalition S on target class C
can be approximated as [47]:

R(S ; C) u 1
|S| ∑

Fj∈S
[I(Fj; C)], (8)
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Likewise, the change of relevance of a coalition S on target class C due to the knowledge of
feature Fi, (Fi /∈ S) is approximately

I(S ; C|Fi) u
1
|S| ∑

Fj∈S
[I(Fj; C|Fi)− I(Fj; C)], (9)

Moreover, two features Fi and Fj are defined to be interdependent of each other if the relevance
between Fj and the target class C is increased when Fi (I(Fj; C|Fi) > I(Fj; C)), meaning that the impact
of this feature cannot be overlooked in the model [48]. Parameter γi

S is defined to count the number of
features in coalition S that are interdependent on feature Fi as follows

γSi = 1(I(Fj; C|Fi) > I(Fj; C)), for all Fj ∈ S . (10)

where 1(.) is the indicator function.
In order to select the most informative subset of features, we first determine the impact of feature

Fi on all possible coalitions of features excluding Fi, {S : S ⊂ N , Fi /∈ S}. Feature Fi is a swinger for
coalition S , if it increases the relevance of this coalition on the target class and also if it is interdependent
with at least half of the members of coalition S . Then, a swinger index ζi for feature Fi is defined as:

ζi =

{
1, I(S; C|Fi) ≥ 0, γSi ≥

|S|
2

0, otherwise
(11)

Consequently, the Banzhaf power of feature Fi calculates the ratio of all coalitions for which player
Fi is a swinger, ηi(v) = 1

2n−1 ∑
S⊂N\i

ζSi . This parameter quantifies the power of features in turning the

losing coalitions into winning ones and hence can be used to choose the top informative features.

5. Numerical Analysis, Discussion, and Limitations

In this section, we examine the utility of the proposed approach in selecting informative features
from three signal sources to verify alarm validity. For this study, we use the Physionet Challenge
2015 database as described in Section 2. The dataset includes the recorded signals for 750 patients.
Out of which, only for 220 patients all three signals of ECG II, ABP and PLET are available. Therefore,
we used these 220 samples to demonstrate the capability of the proposed method in extracting the
correlation among different signals. We arbitrarily used 10-fold cross-validation to train the classifier
(198 training samples). In order to calculate time-frequency information at different resolutions, we first
apply six-level wavelet decomposition using Daubechies 8 (db8) to signals. As there are 3 signals
and six levels of wavelet decomposition in each sample, we have 18 vectors of wavelet coefficients.
We extract 20 statistical features as well as information-theoretic ones from each vector, and hence we
have a total of 360 features. The list of features are provided in Table 2.

The proposed coalition game based on Banzhaf power evaluates the average marginal
importance of each feature when joining any potential coalition of features. The metric we use is
the interdependency of newly added features with the coalition members as defined in Section 4.
In order to obtain interdependency, we first discretized the wavelet coefficients. The quantization
levels are obtained from Lloyd algorithm, which minimizes the MSE error between the continuous
values and the quantized versions for a training dataset and a given number of quantization levels
(here we choose five quantization levels) [38]. The quantized values are used to calculate the required
mutual information which further is used to calculate features’ interdependencies. Then, a swinger
index ζSi for each feature Fi with respect to coalition S is set to 1 if the feature is interdependent with at
least half of the coalition members Equation (11). The Banzhaf power for each feature Fi is calculated
as the ratio of coalitions for which the feature Fi is a swinger. We rank the features based on their
Banzhaf powers and choose the top-20 features.
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In order to evaluate the relevance of the obtained features, we used Weka ver. 3.6 package and
applied state-of-the-art feature selection methods to the extracted features and selected the top-20 of
them for each method. In this experiment, the following attribute selection techniques are utilized:
(i) A subset of features with the lowest intra correlation and the highest inter correlation with the
labels are selected using the Correlation-based Feature Subset Selection (CFS) [49]; (ii) A subset of
features is selected using Chi-square method that evaluates features’ chi-squared statistic with respect
to the class label [50]; (iii) The conditional entropy of class given the selected features is minimized
using the Gain ratio method [51]; (iv) The importance of a test feature set is evaluated using the
RELIEF method that examines the difference of Euclidean distances for randomly selected samples
with the nearest samples of the same and different classes using the test feature set [52], (v) The
SVM-based ranker, in which the features are ranked by the square of their weights assigned by the
SVM classifier [53]. For completeness of comparisons, we also employed popular sparsity imposing
regression methods including LASSO [54] and logistic regression and selected the top-20 features with
highest absolute coefficients in the model. We also included the results for the classification accuracy
using all 360 features that are shown by NoFS in Figures 1 and 2. Finally, the results are also compared
with our recently developed Shapley-based coalition game theoretic feature selection method [27,29].

In order to compare the performance of the aforementioned feature selection methods, Bayes-Net
with 10-fold cross validation is selected as a representative classifier to classify the alarms into false
and true alarms. It is worth mentioning that definition of the proposed feature selection method is
independent of the choice of classifier technique and it can be applied to all classification techniques.
The classification success rates, and the sensitivity and specificity for all aforementioned feature
selection methods are presented in Figures 1 and 2.

Figure 1. Alarm classification success rate for various feature selection methods using top-20 features.
Bayes-Net classification with 10-fold cross validation is used to classify alarms into true and false alarms.
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Figure 2. Sensitivity and specificity of various feature selection methods using top-20 features and
Bayes-Net classification with 10-fold cross validation.

The results in Figure 1 represent the alarm classification success rate which is the ratio of
successfully classified alarms. Figure 1, represents the specificity and sensitivity of the classifier using
features reported by different methods. Sensitivity is calculated as the ratio of recognized true alarms to
the number of all true alarms. Likewise, specificity is calculated as the ratio of recognized false alarms
to the number of all false alarms. In other words, a higher sensitivity is desired for not missing a true
alarm and an acceptable level of specificity is required not to report a false alarm. The trained classifier
shows a better sensitivity compared to the majority of feature selection methods, which is desired since
missing a true alarm may have catastrophic consequences. It is worth mentioning that the obtained
results cannot be directly compared to the top entries from the Physionet Challenge 2015, since in this
paper, we have a total of (220) samples for both training and test purposes, which is substantially less
than those reported works which had access to 750 training samples and 500 test samples.

The results show that the proposed algorithm when combined with Bayes Net classifier
outperforms the majority of other feature selection methods in recognizing true and false alarms
with a low computation complexity. Interestingly, the false alarm recognition rate (specificity) is
substantially improved compared to the best competitors methods, while the true alarm recognition
(sensitivity) remains almost at the same level. The low success rate for NoFS is somewhat expected
and demonstrates the value of feature selection, since incorporating all features in classification not
only increases the time and computational load of the classifier, but also decreases the classification
accuracy due to the well-known over-fitting problem. It is also observed that the proposed method
provides a similar level of accuracy compared to our previously developed coalition-based game
theoretical feature selection method using Shapley value. However, the Banzhaf-based coalition game
includes much less computational power. In Shapley-based coalition game, the marginal importance of
a feature Fi when joining a coalition S with |S|members is calculated by checking all 2|S| permutations.
However, in Banzhaf-based coalition game, in order to evaluate marginal importance of a feature Fi
with respect to coalition S , we examine interdependency of this feature with |S|members, that requires
much less calculations. In summary, the key advantages of the proposed feature selection method are:
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(i) providing a comparable results to the best feature selection methods including CFS, (ii) considering
the linear and non-linear correlation among the extracted features extracted from different signals
beyond the commonly used pairwise correlations (which are in this application), and (iii) offering a
relatively low computational complexity compared to previously proposed coalition game-theoretic
approaches (such as Shapley-based method proposed.

Figure 3 demonstrates the rate of selected features from each of the wavelet levels for all signals.
As can be seen, the features in low levels of ECG, corresponding to smoother waves such as P and T
have proved to be more significant for this decision making task. A similar observation can be made
regarding the low level features of PLETH. However, the medium levels of ABP appear to be selected
more frequently in the process. The frequencies of variations in these levels of wavelet decomposition
seem to correspond to the informative patterns in dicrotic notch.

Figure 3. Relative appearance of selected features in different levels of wavelets for the vital signals.

Figure 4 compares the ROC (receiver operating characteristic) curve for different feature selection
methods using Bayes-Net classification with 10-fold cross validation. As can be seen in Table 3, the
proposed method that is based on calculating Banzhaf power achieves the highest area under the ROC
curve (AUC = 0.7432) compared to well-known feature selection techniques.

Table 3. Comparison of area under ROC curve for different feature selection methods.

Feature Selection Method Area under ROC Curve (AUC)

Proposed method based on Banzhaf power 0.7432
CFS 0.73546

ChiSquare 0.70304
GainRatio 0.7290

LASSO 0.66353
Logistic 0.56414
Relief 0.7286

Wrapper 0.5557

Finally, we note that the above results are provided for 220 samples with valid ECG II,
PLETH, and ABP signals, combining all alarm types, since the sample size for specific alarms
are too small. Out of 220 patients with three recorded signals, the number of available
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samples for Asystole, Extreme Bradycardia, Extreme Tachycardia, Ventricular-Flutter/Fibrillation,
and Ventricular-Tachycardia is 34 (4 true and 30 false alarms), 30 (21 false and 9 true alarms), 15 (14 false
and 1 true alarms), 17 (12 false and 5 true alarms)and 124 (106 false and 18 true alarms), respectively.
However, for the sake of completeness, we present the results of our proposed method for the fifth
alarm: Ventricular-Tachycardia, which includes 124 samples. We used the top-20 features reported by
the proposed method. Table 4 presents the obtained accuracy, precision and recall rate using different
classification methods. The obtained accuracy 85.5% rate is higher than that of the entire dataset
(77.6%), due to the intrinsic differences among the signals corresponding to different alarm types.
Therefore, for larger datasets, performing per-alarm analysis is desired. It is interesting to see that
most classification algorithms perform almost equally. In addition, BayesNet significantly outperforms
Naive Bayes where the relations among features are not considered.

Figure 4. ROC curve for different feature selection methods.

Table 4. The performance of the proposed method in terms of classification accuracy, precision and
recall rate for samples with alarm type of Ventricular-Tachycardia arrhythmia using different classifiers.
The dataset includes 124 samples with 106 false and 18 true alarms.

Classification Method Accuracy Precision Recall

Bayes Net 85.48 0.73 0.86
Rotation Forest 85.48 0.73 0.86

Naive Bayes 72.6 0.74 0.73
IBK 85.48 0.73 0.86

J48 (tree) 85.48 0.73 0.86

5.1. Limitations

The proposed feature selection method can be utilized along with different classification methods.
Here, we note that it is a known fact that different feature selection methods may perform differently
when applied to different classifiers. To investigate this problem, we have tried the performance
of our feature selection method over different classifiers including Random Forest, Naive Bayes,
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Sequential Minimal Optimization (SMO), and J48 decision tree. We observe that our proposed method
performs almost equivalently to other feature selection methods, and the improvement is considerable
for the Bayes-Net classifier. The justification for this observation is that Bayes-Net considers the
relations among the features and hence using Banzhaf power which selects features with stronger
synergistic powers yields better results. Therefore, to benefit from this proposed method, it is more
advantageous to use it with classifiers that consider inter-feature dependencies. It is worth mentioning
that the numerical results are reported for a small and relatively unbalanced dataset of 220 patients
with three signals of ECG II, ABP and PLET. Out of these samples, 50 are false and 170 are true alarms.

6. Conclusions

One of the critical concerns in intensive care units that has not been resolved yet is the high false
alarm rate. In this paper, we proposed a novel coalition game theoretic-based feature selection method
to detect the false alarms. The proposed method accounts for information-theoretic correlation among
the features in all possible coalitions of them. This feature selection problem is defined as a simple
coalition game, where the average contribution of each feature (game player) is determined by Banzhaf
power. A feature is defined to play a critical role in a coalition if it increased the relevancy of the
coalition on target class and also was interdependent on more than half of the coalition’s members.
The numerical results presented in this paper, calculated using Bayes-Net classifier, showed the
superiority of the proposed method over existing feature selection methods such as Gain Ratio,
Chi-square, and Relief methods in terms of false alarm detection as well as area under the ROC curve.
It should be noted that the proposed method can be applicable to commonly used classifiers that require
feature selection. However, it is more likely that the proposed method outperforms other feature
selection techniques when integrated with classifiers which consider the inter-feature dependencies.
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