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ABSTRACT

Electrocardiogram (ECG) signal is a common and powerful
tool to study heart function and diagnose several abnormal
arrhythmia. While there have been remarkable improvements
in cardiac arrhythmia classification methods, they still can-
not offer an acceptable performance in detecting different
heart conditions, especially when dealing with imbalanced
datasets. In this paper, we propose a solution to address this
limitation of current classification approaches by developing
an automatic heartbeat classification method using deep con-
volutional neural networks and sequence to sequence models.
We evaluated the proposed method on the MIT-BIH arrhyth-
mia database, considering the intra-patient and inter-patient
paradigms, and the AAMI EC57 standard. The evaluation
results for both paradigms show that our method achieves the
best performance in the literature (a positive predictive value
of 96.46% and sensitivity of 100% for the category S, and a
positive predictive value of 98.68% and sensitivity of 97.40%
for the category F for the intra-patient scheme; a positive
predictive value of 92.57% and sensitivity of 88.94% for the
category S, and a positive predictive value of 99.50% and
sensitivity of 99.94% for the category V for the inter-patient
scheme.)

Index Terms— ECG analysis, heartbeat classification,
deep learning, sequence to sequence model, RNNs.

1. INTRODUCTION

An Electrocardiogram (ECG) is a common non-invasive tool
to record the heart activities and detect different abnormal-
ities in heart functionality. Classification of the arrhythmic
heartbeats in the ECG signal can be a challenging and time-
consuming task for a physician, therefore, such heartbeat
hand-annotating is often prone to error. This calls for auto-
matic heartbeat classification methods that are able to diag-
nose arrhythmic heartbeats in real-time with high accuracy.
Several machine learning algorithms such as support vector
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machines (SVM), multi-layer perceptron (MLP), reservoir
computing with logistic regression (RC) and decision trees
have been utilized for arrhythmia detection [} 12| [3} 4, 5].
These shallow machine learning methods for ECG pro-
cessing usually follow three main steps, including: 1) sig-
nal pre-processing, which includes noise removal methods,
heartbeat segmentation, etc; 2) feature extraction; and 3)
learning/classification. Even though these methods with
hand-engineered features and applying noise removal tech-
niques have achieved acceptable performances, deep learning
approaches (i.e., automated feature extractions) have shown
impressive results in various domains ranging from com-
puter vision and reinforcement learning to natural language
processing [6} 7, 18] as well as more applicable outcomes in
biomedical signal processing [9,|10].

One of the main limitations of the current heartbeat clas-
sification methods including shallow and deep machine learn-
ing methods is their poor performance when dealing with im-
balanced datasets. In particular, they attain a low positive pre-
dictive value and sensitivity for the classes with lower sample
size in the dataset. For instance, the majority of existing ECG
analysis techniques achieve a low sensitivity in the MIT-BIH
arrhythmia database for ventricular escape beat (S) and fu-
sion of ventricular, and normal beat (F) classes. Furthermore,
most previously reported works in the literature have been
evaluated based on intra-patient paradigm rather than inter-
patient scheme which is a obviously more realistic scenario
to prevent training and test the model using the samples from
the same patients. Therefore, although some of these meth-
ods achieved good accuracies using the intra-patient scheme,
their results are not reliable as their evaluation process was
biased [11].

As mentioned above, the conventional arrhythmia classi-
fication systems can be generally divided to two categories
of inter-patient and intra-patient paradigms in terms of their
evaluation mechanism. In intra-patient paradigm, the training
and evaluation datasets can include heartbeats from the same
patients, while in inter-patient paradigm, a more realistic eval-
uation mechanism is used where the heartbeat sets for test and
training come from different individuals. One of our aims in
this paper is to evaluate the proposed method with both the
paradigms.

Inspired by the aforementioned issues with the previous



works, this paper proposes a novel and effective approach for
automatic ECG-based heartbeat classification by leveraging
a sequence to sequence deep learning method and an over-
sampling method named Synthetic Minority Over-sampling
Technique (SMOTE) to address the aforementioned challenge
with minority classes. The proposed model is evaluated using
inter-patient and intra-patient paradigms where it achieves the
best results compared to the existing works in the literature.
The rest of this paper is organized as follows. Section
introduces the database utilized in this study. Section [3| de-
scribes the proposed method. Section [] presents the experi-
mental setup and shows the achieved results by the proposed
method along with a performance comparison to the state-of-
the-art algorithms. Finally, Section [5]concludes the paper.

2. DATASET

In this study, we used the PhysioNet MIT-BIH Arrhythmia
database to evaluate the performance of our proposed method
[12 [13]]. The MIT-BIH dataset includes the ECG signals for
48 different subjects recorded at the sampling rate of 360Hz.
Each record contains two ECG leads; ECG lead II and lead
V1. Usually, the lead II is used to detect heartbeats in the
literature. Similarly, here in all experiments, we have applied
ECG lead II. This database is recommended by he American
association of medical instrumentation (AAMI) [14], since it
includes the five essential arrhythmia groups as described in
Table[Il

We considered two main paradigms of inter-patient and
intra-patient to evaluate the proposed model. In the intra-
patient paradigm, two sets of data samples (beats) are chosen
randomly as training and test samples in which there may be
the heartbeat samples of the same patient in the training and
test sets. While, in the inter-patient paradigm, the training and
test set are constructed from different patients, following the
protocol proposed by de Chazal et al. [11]]. In this method,
the heartbeats from the MIT-BIH database (44 records based
on AAMI) are divided into two sets of records: DS1 = {101,
101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124,
201, 203, 205, 207, 208, 209, 215, 220, 223,230} and DS2
= {100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210,
212,213, 214, 219, 221, 222, 228, 231, 232, 233, 234}. DS1
is used to build the classification model and DS2 is utilized
to test the model. Using this division approach, there is no
concern about including the heartbeats from the same patient
in both training and test sets.

3. METHODOLOGY

In the following sections, we present a detailed description
of our proposed novel model to automatically classify each
heartbeat of a given ECG signal.

3.1. Pre-processing

The input of this method is a sequence of ECG beats. In order
to extract the ECG beats from a given ECG signal, we follow
a few simple steps:

1. Normalizing the given ECG signal to the range of be-
tween zero and one.

2. Finding the set of ¢ waves regarding the ECG R-peaks
of its corresponding annotation file in the MIT-BIH Ar-
rhythmia database.

3. Splitting the continuous ECG signal to a sequence of
heartbeats based on the extracted ¢ waves and assigning
a label to each heartbeat based on the annotation file.

4. Resizing each heartbeat to a predefined fixed length.

We would like to note that these pre-processing steps for beat
extraction are very simple and do not involve any form of
filtering or noise removal methods.

Table 1: Categories of heartbeats existed in the MIT-BIH
database based on AAMI.

Category | Class

Normal beat (N)

Left and right bundle branch block beats (L,R)
Atrial escape beat (e)

Nodal (junctional) escape beat (j)

N

Atrial premature beat (A)

Aberrated atrial premature beat (a)
Nodal (junctional) premature beat (J)
Supraventricular premature beat (S)

Premature ventricular contraction (V)
Ventricular escape beat (E)

Fusion of ventricular and normal beat (F)

Paced beat (/)
Q o Fusion of paced and normal beat (f)
e Unclassifiable beat (U)

3.2. The architecture

The sequence to sequence models have shown very impas-
sive results in neural machine translation applications, nearly
similar to human-level performance [15]. The architecture
of sequence to sequence networks is usually composed of
two main parts of recurrent neural network (RNN) encoder
and decoder. In this study, we leverage a RNN sequence to
sequence model along with a convolutional neural network
(CNN) to perform a heartbeat detection task.

Fig. 1 illustrates the proposed network architecture for
automatic beat classification. The CNN consists of three con-
secutive one-dimensional convolutionl layers. The first layer
is composed of 32 1-D convolution filters with a kernel size
of 2 x 1 and a stride 1, followed by a Rectifed Linear Unit
(ReLU) nonlinearity. The second layer consists of 64 1-D
convolution filters with a kernel size of 2 x 1 and a stride
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Fig. 1: The proposed sequence to sequence deep learning network architecture for automatic heartbeat detection.

1, again followed by an ReLU. Finally, the third layer is com-
prised of 128 1-D convolution filters with a kernel size of 2 x 1
and a stride 1, followed by a rectifier nonlinearity. Each con-
volutional layer except the last layer is also followed by a max
pooling layer of pooling region of size 2 x 1 with a stride 1.
At each time-step of training/testing the model, a sequence
(size of maxtime) of ECG beats are fed into the CNN in or-
der for feature extraction. The last convolutional layer outputs
the maxtime of F feature maps of size k x 1 (e.g, here, we
reached 128 feature maps 3 x 1). At the end, each beat of
the input sequence is associated to a vector ¢ € R¢. Figure
depicts the detailed network.

The sequence to sequence model is designed based on
the encoder-decoder abstract ideas. The encoder encodes the
input sequence, while the decoder computes the category of
each beat of the input sequence. The encoder is actually com-
posed of long short-term memory (LSTM) units, which is also
called the many to one LSTM. The LSTMs can capture the
complex and long short-term context dependencies between
the inputs and the targets [[16]. This is due to the fact that they
capture non-linear dependencies on entire observation when
predicting a target. The (time) sequence of input feature vec-
tors herein are fed to the LSTMs and then the last hidden state

calculated by the LSTM is considered as the encoder repre-
sentation, and is used to initialize the fist hidden state of the
decoder, as depicted in Fig. 1.

We have utilized the bidirectional recurrent neural net-
work (BiRNN) units in the network architecture instead of
the standard LSTM (i.e., RNN). Standard RNNs are unidi-
rectional, hence they are restricted to the use of the previ-
ous input state. To address this limitation, the BiRNN have
been proposed [[17]], which can process data in both forward
and backward directions. Thus, the current state has access
to the previous and future input information simultaneously.
The BiRNN consists of a forward network and a backward
network. The input sequence is fed in a normal time order,
t = 1,...,T for the forward network, and in reverse time
order, t = T,...,1 for the backward network. Finally, the
weighted sum of the outputs of the two networks is computed
as the output of the BiRNN. This mechanism can be formu-
lated as follow:
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Fig. 2: A diagram of convolutional layers used in the proposed model.
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where (Ft}, ?) are ge hidden state and the bias of the froward
network, and (h;, b) are the hidden state and the bias of the
backward network. Also, x; and y; are the input and the out-
put of the BiRNN, respectively. The decoder is used to gen-
erate the target sequence beat by beat. Similar to the encoder,
the building block of the decoder is a LSTM, but a many-to-
many LSTM. The decoder gets a new representation of the
input sequence generated by the encoder to initialize its hid-
den state. It also captures the same given target shifted by one
and started with a special feature vector < GO > as input.
We should note that the input is just used during the training
phase and is not applied for the testing phase. Then, a soft-
max is applied to the output of the LSTM to convert it to a
vector of probabilities p € RY, where C represents the cate-
gory (i.e., the heartbeat types) and each element of p indicates
the probability of each class in the category.

4. EXPERIMENTAL EVALUATION

4.1. Experimental setup

The performance of the proposed heart beat detection method
has been evaluated using the MIT-BIH arrhythmia database
using both inter-patient and intra-patient evaluation methods.
Heartbeat category distribution of extracted beats from the
MIT-BIH arrhythmia is not uniform and the number of nor-
mal beats are much greater than other categories. Machine
learning approaches usually have trouble learning when one

class dominates the others. To cope with this, the dataset has
been oversampled to nealrly reach a balanced number of beats
in each category (group). To this end, we used the synthetic
minority over-sampling technique (SMOTE) which generates
the synthetic data points by considering the similarities be-
tween existing minority samples [21]].

Similar to several works in the literature, we evaluated
the arrhythmia classifier on four cardiac cycles including N
(normal and bundle branch block beats), S (supraventricular
ectopic beats), V (ventricular ectopic beats), and F (fusion of
N and V beats) (for more details refer to Table |I|) For the
intra-patient scheme, we extracted totally 101,290 heartbeats,
including 90,494 beats for the category N, 2,777 for the cate-
gory S, 7,217 for the category V and 802 for the category F.
To reduce the impact of class imbalance problem, the SMOTE
technique was applied to upsample the categories with the
small factions of heartbeats. We have trained the proposed
model with 80% of dataset and evaluated it with the remain-
ing 20%. While for the inter-patient scheme, we had N =
45,796, S = 941 and V = 3,780 heartbeats in DS1 (i.e., train-
ing set), and N = 44,196, S = 1,836 and V = 3,216 heartbeats
in DS2 (i.e., test set). Again, the SMOTE approach was uti-
lized to compensate the number of heartbeats of the categories
with the lower heartbeats.

The augmented data (i.e., synthetic data generated based
on the original available data) should not be considered in
the validation phase as the information of validation set may
exist in the training set. For instance, although the work re-
ported in [10], followed this approach, we believe that the
results are not quite accurate. It is worth mentioning that we
generated new data samples by the SMOTE algorithm after
splitting the heartbeats into the training and test datasets. In-
deed, the oversampling was only performed on the training
dataset for the intra-patient paradigm (and on DSI1 for the



Table 2: Intra-patient paradigm: Comparison of performance of the proposed heartbeat classifier against the state-of-the-art
algorithms, considering randomly chosen sets for the training and testing based on the MIT-BIH arrhythmia database.

Method ACC N S
%o SEN PPV SPEC SEN PPV
Proposed method 99.92 1.00 99.86 98.87 96.48 1.00

Kachuee et al. (2018)[9] 93.4

91.64 85.17 96.01 89.04 94.76

Acharya et al. (2017) [10] 97.37
Ye et al. (2010) [1] 96.50 987 96.3 - 724 945
Yu and Chou (2008) [4] 954 969 973 - 73.8 884

Song et al. (2005) [18] 98.7 995 989 - 86.4 943

v F Q
SPEC SEN PPV SPEC SEN PPV SPEC SEN PPV SPEC
100 9950 99.79 9998 98.68 97.40 99.98 - -
9877 9407 9508 98.74 9521 9469 98.67 97.39 9840 99.61
- 826 97.8 - 656  88.6 - 958 993
923 943 . 51.0 734 . 94.1  80.8
958 974 - 736 90.2 - - -

Table 3: Inter-patient paradigm: Comparison of performance of the proposed heartbeat classifier against the state-of-the-art
algorithms, considering DS1 as training dataset and DS2 as test dataset based on the MIT-BIH arrhythmia database.

Method ACC N S A\ F Q

% SEN PPV SPEC SEN PPV SPEC SEN PPV SPEC SEN PPV SPEC SEN PPV SPEC
Proposed method 99.53 99.68 99.55 96.05 88.94 92.57 99.72 99.94 9950 99.97 - - - - - -
Garcia et al. (2017)[19] 924 940 98.0 82.6 62.0  53.0 97.9 873 594 95.9 - - - - - -
Acharya et al. (2014) [20] 93.0 91.0  99.0 - 81.0 310 - 86.0 73.0 - - - - - - -
Ye et al. (2010) [1] 752 802 782 - 32 10.3 - 50.2 485 - - - - - - -
Yu and Chou (2008) [4] 752 783 7192 - 1.8 59 - 839 664 - 0.3 0.1 - - - -
Song et al. (2005) [18] 763  78.0 839 - 27.0 483 - 80.8 387 - - - - - - -

inter-patient paradigm) and the information in the test dataset
was not used to create synthetic data points. Therefore, the
evaluation process is reliable and generalizable.

Four main measures usually were considered in the liter-
ature to evaluate the performance of heartbeat classification
techniques including the sensitivity (SEN), positive predic-
tive value (PPV), specificity (SPEC) (1 - False Positive Rate
(FPR)) and accuracy (Acc) as defined in follow:

SEN =TP/(TP + FN) (4)
PPV =TP/(TP + FP) (5)
SPEC = TN/(TN + FP) (6)
Acc = (TP +TN)/(TN + FP + FP + FN), )

where TP (True Positive), TN (True Negative), FP (False Pos-
itive) and FN (False Negative) indicate the number of heart-
beats correctly labeled, number of heartbeats correctly identi-
fied as not correspond to the heartbeats, number of heartbeats
that incorrectly labeled, and number of heartbeats which were
not identified as the heartbeats that they should have been, re-
spectively.

The network was trained for 80 epochs and the initial
LSTM hidden and cell states were set to zero. All network
weights were updated by the RMSProp algorithm with mini
batches of size 20 and a learning rate of o = 0.001.

4.2. Results and Discussion

The results are presented for two evaluation scenarios of
intar-patient paradigm, in which the training and test sets
were randomly chosen from all available patients’ heartbeats,
and the inter-patient paradigm, in which the training and test

have been performed on the heartbeats of extracted from DS1
and DS2, respectively (i.e., no common individual in test
and training sets). Table [2] presents a comparison of heart-
beat classification results for the proposed method and the
existing algorithms, considering intra-patient scheme. As
it is clear, our sequence to sequence model outperforms all
state-of-the-art algorithms significantly in terms of all evalu-
ation metrics including overall accuracy, sensitivity, positive
predictive value and specificity for the considered groups, N,
S, V, F. In addition, it is worth noticing that the work done
by Acharya et al. [10] used artificially augmented dataset to
build the model, and their model evaluation was performed
using augmented data, while we evaluated our model on real
data samples without including any augmentations in test set.

As confirmed by the results, our proposed method can
provide a robust solution for class imbalance problem as one
of the key challenges in dealing with medical data, which is
due to the limited availability of abnormal classes compared
to the normal classes in biomedical datasets. It is shown in
Table 2] that our model achieves remarkable outcomes for the
category F with only 802 heartbeats and the category S with
2,777 heartbeats.

We also validated our method using the more realistic
evaluation method of inter-patient for heartbeat classifiers
based on using DS1 set for training and DS2 set for test-
ing [11l 22]. Table 3] presents the performance comparison
between our proposed method and several state-of-the-art
methods using MIT-BIH arrhythmia database where inter-
patient paradigm is considered. As it can be seen from the
table, overall the proposed method has a better performance
for classifying all heartbeat categories compared to works
listed in Table[3] In spite of the low number of S heartbeats



in the training set, our proposed method obtained significant
evaluation results.

The proposed method is generic in nature and it is ex-
pected to achieve a promising performance in several biomed-
ical applications dealing with class imbalance problem. In the
proposed classification structure, first the CNN extracts a set
of meaningful features of the given ECG heartbeats (Note,
the model was trained by added synthetic data generated by
SMOTE algorithm to the available samples to compensate the
number of small categories like F). Then, the encoder maps
the features to new feature representations, capturing tempo-
ral patterns, and finally, the the decoder takes the feature rep-
resentations and produces the outputs (i.e., the labels for each
heartbeat of the input sequence), considering complex context
dependencies between the inputs and the targets.

5. CONCLUSION

In this study, we presented a novel and effective automatic
heartbeat classification/annotation, considering intar- and
inter- patient schemes and validated its performance using
the MIT-BIH arrhythmia database. The proposed method
leverages the ability of deep convolutional neural network
and encoder-decoder network in which we have used bidi-
rectional recurrent neural network as its building blocks.
According to the results, the suggested method significantly
outperforms the existing algorithms in the literature for both
intar-patient paradigm and inter-patient paradigm. Further-
more, the proposed method can be applied on several biomed-
ical applications such as sleep staging where there are strong
dependencies between each stage and sufficient data are not
available. Also, the proposed network with low number of
parameters (i.e., with a maximum size of 5.5MB) can be used
with wearable devices.
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