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Abstract. False alarm is one of the main concerns in intensive care units
which could result in care disruption, sleep deprivation, insensitivity of
care–givers to alarms and so on. Many approaches such as improving the
quality of physiological signals by filtering and developing more accurate
sensors have been proposed in the last two decades to suppress the rate
of false alarm. Moreover, some multi–parameter/feature methods have
been developed to classify the alarms more accurately. One of the main
problems facing these methods is that they neglect those features that
individually have low impact on the accuracy. In this paper, we propose a
model based on coalition game that considers the inter–features mutual
information which results in gaining the accuracy of the classification.
Simulation results on a database produced by four hospitals shows the
superior performance of the proposed method compared to other existing
methods.
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1 Introduction

In order to monitor a patient and also for the sake of diagnostic, prognostic and
treatment, many monitoring and therapeutic devices are utilized in intensive
care units (ICUs). These devices are also used to measure vital signs, support
or replace impaired or failing organs and administer medications to patients
[12]. Each of these devices might generate optic/acoustic alarms due to patient’s
physiologic condition, patient movement, motion artifact, malfunction of indi-
vidual sensors and imperfections in the patient–equipment contact [18]. Many of
the alarms (80% to 99% [9]) could be false and/or clinically insignificant which
are not related to patients’ condition. These alarms could compromise quality
and safety of care, which could result in many problems such as “alarm fatigue”
among care–givers as well as the possibility of missing a real event due to care–
givers insensitivity to these unreliable alarms known as “cry–wolf” effect.
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Dealing with false alarms is widely considered the number one hazard im-
posed by the medical technology and an important concern in ICUs [9]. Many
approaches have been utilized to decrease the number of false alarms such as
adding short delay [9], improving the quality of signals, improvements in sensor
technology and utilizing advanced multi–parameter models [3, 21]. An overview
on clinical situation and different aspects of false alarm problem can be found
in [9] and [13].

Using a machine learning approach, Li and Clifford have designed a frame-
work for false alarm reduction on arrhythmia patients. They extracted 114
features from electrocardiogram (ECG), arterial blood pressure (ABP), and
Photoplethysmogram (PPG or PLETH), that measures oxygen saturation level
(SpO2), and used a genetic algorithm to select a subset of these features. Us-
ing a relevance vector machine (RVM) as a classifier, false alarm suppression
was reported to be 86.4%, 100% and 27.8% respectively for asystole, extreme
extreme bradycardia and extreme tachycardia. An automated method for false
arrhythmia suppression was proposed in [5] that is based on quality assessment
of normal and abnormal rhythms of ECG signals. In this method an ECG sig-
nal is downsampled to 125Hz and then QRS detection algorithms are applied.
After that baseline wander is filtered and different signal quality indexes (SQI)
are calculated and used in a support vector machine (SVM) classifier where the
obtained accuracy, sensitivity and specificity are respectively 0.990, 0.985, and
0.994. Different approaches including k–nearest neighbors (KNN), Naive Bayes,
Decision Tree, SVM and multi–layer Perceptron have been tested on a database
from MIMIC II for alarms classification, where the features have been extracted
from age, sex, Central venous pressure (CVP), SpO2, ABP, ECG and pulmonary
arterial pressure (PAP) [4]. The suppression rate for true alarm detection is be-
tween 2.33% and 17.73% for 5 alarms and false alarm suppression rate is between
71.73% to 99.23%. Charbonnier and Gentil have proposed a trend extraction that
tracks the changes in signals using a fuzzy decision approach[6] and could filter
81% of the false alarm without filtering any true alarms where they tested their
method on a small number of examples.

The above models considers a number of features/parameters extracted from
multiple continuously–measured physiological signals, such as ECG and ABP to
create more reliable alarms. The major problem faced by these multi–parameter
approaches is the presence of many parameters / features that individually have
low impact on the model performance, and as such they might not be included
in the model, while when coupled with other such parameters could significantly
improve the performance of the accuracy and specificity of the alarm detection
algorithms. Besides statistical evidence to this observation, the fact that physi-
cians, by visual interpretation of the patterns in all patients’ signals, can very
often correctly decide on the validity of the alarms caused by individual ma-
chines / monitors, suggests when a suitable combination of all data/features are
included in a model, false alarms can be reduced significantly [7].

Several data mining and feature reduction algorithms have been utilized
in analysis of big data sets to improve the prediction accuracy and reliability
through reducing the feature space to a more concise and relevant set of at-
tributes [11, 22, 26, 16, 17]. However in the majority of these conventional meth-
ods, each of the features is evaluated separately, and as such, the possible cor-
relation among them is neglected. Specifically, the existing methods either only
account for the effect of individual features on the target or consider the inter–
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feature mutual information to obtain higher performance; however, it is often
the case that a set of features together have a considerable effect on the classifier,
while each individual attribute in the set does not. Therefore, these features will
most likely be filtered out resulting in significant degradation in the performance
[10].

Cooperative game theoretic approach has been recently utilized in feature
selection algorithms [20, 19, 8]. In this paper, we propose a coalition based game–
theoretic predictive modeling approach to suppress the false alarm for five types
of life threatening arrhythmias including asystole, extreme bradycardia, extreme
tachycardia, ventricular tachycardia, and ventricular flutter/fibrillation. Three
main signals of ECG, ABP, and PLETH are used as the inputs of our proposed
model. In the first stage (i.e. signal analysis) wavelet coefficients of each signal
at different levels of decomposition are calculated. Then, a number of statistical
features such as mean, variance, median, kurtosis and entropy of the resulting
wavelet coefficients are calculated for each level. The calculated coefficients along
with the other parameters are used as features for our proposed coalition game
theoretic approach in which different combinations of features are considered
for creating a predictive model that assesses the validity of the alarms. The
proposed method accounts for intricate and intrinsic interrelation among all po-
tentially effective combinations of the features by measuring the contribution
of features both individually and in group with others in order to identify the
most informative grouping. A main capability of the proposed method is finding
discriminating combined / sub–sets of apparently low–impact features, which
despite their weak individual contribution to the classifier could have a quantifi-
able impact on the specificity and accuracy of the alarm detection approaches
when grouped with other features.

The rest of this paper is organized as follows. Section 2 introduces the pro-
posed signal analysis and feature extraction techniques. An introduction to coali-
tion game theory followed by the description of the proposed game theoretic
based feature selection method are presented in Section 3. The numerical anal-
ysis results are presented in Section 4, followed by conclusion in Section 5.

2 Signal Analysis and Feature Extraction

A set of wavelets defines a special filter bank which can be used for signal com-
ponent analysis and the resulting wavelet transform coefficients can be further
applied as signal features for classification. Here, we applied a discrete wavelet
transform (DWT) on the 1–D input signals, ECG, PLETH and ABP. The DWT
is selected because of its advantages over other transforms due to its ability to
separate details in signals. Very fine details can be isolated using small wavelet
and rough details can be captured using large wavelets [24]. DWT decomposes
each input signals into two approximations and detailed coefficient components.
Approximation set is obtained by applying a high–pass filter at low scales and
details coefficients are computed by applying a low–pass filter at high scales. We
used Daubechies 8 (db8) for ECG signal as there is a good match between the
shape of ECG signal and this wavelet. Also we used Daubechies 4 for PLETH
and ABP signals for the same reason. DWT is a shifted and scaled by power of
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two of mother wavelet as:

ψi,j(t) = 1/
√

2iψ(
t− j × 2i

2i
) (1)

where i, j are scale and shift parameters respectively and ψ for a Daubechies
wavelet of class D-2N is defined as :

ψ(t) =
√

2
∑
k

(−1)kh2N−1−k × φ(2t− 1), (2)

φ(t) =
√

2
∑
k

hk × φ(2t− k)

where h shows a high pass filter.
Wavelet coefficients are calculated by convolving the high pass filter, h, and

the corresponding low pass filter, gk = h2N−1−k, with a signal and then the
results are down–sampled. Each of the three mentioned signals is decomposed
into 6 levels by convolving the high–pass and low–pass filters. The calculated
coefficient are shown as X = [E1, ..., El, A1, ..., Al, P1, ..., Pl] where l shows the
number of decomposition levels, (here l = 6). Ei, Ai and Pi respectively show
the wavelet coefficients of ECG, ABP and PLETH signals. For i = l each of these
parameters shows the details coefficients and for i 6= l each of them shows the
approximate coefficient. Approximate and details coefficients can be respectively
calculated from (3) and (4)

ai(t) =
∑
k

ai−1(t)h2t−k (3)

di(t) =
∑
k

ai−1(t)g2t−k (4)

where a−1 shows the input signal (i.e. ECG, ABP or PLETH). Including all
wavelet coefficients as features to the classification setup is not efficient and
may significantly decrease the generalization property of the trained model due
to over-fitting. Therefore, we further reduce the number of features by extract-
ing representative statistical and information–theoretic properties of the wavelet
vectors as summarized in Table 1. In calculating information–theoretic proper-
ties (e.g. Entropy), we assume that the wavelet vector elements are derived from
an unknown probability distribution.

In Table 1, features 1 to 10 are typical statical properties of the signal, where
µn is the nth standardized sample moment defined in

µn =
ΣN
i=1(Xi − X̄)n

N
, X̄ =

ΣN
i=1Xi

N
(5)

In Eq (5), X1, . . . , XN are the N th wavelet coefficients associated with each
signal probe. Kurtosis and skewness define the shape of probability distributions
such that kurtosis, defined in (6) measures the peakedness of distribution and is
defined as the ratio of the forth standardized moment to the square of variance.

κ(X) =
E[(X − µ)4](
E[(X − µ)2]

)2 =
µ4(X)

σ4(X)
(6)
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Table 1: Statistical and Information-theoretic features of wavelet vectors.
No Feature No Feature No Feature
1 mean 13 skewness 25 nS(10)

2 mode 14 harmonic mean 26 nS(100)

3 median 15 interquartile range 27 nS(1000)

4 max 16 Shannon Entropy 28 nS(10000)

5 min 17 Log Entropy 29 nS(25000)

6 range 18 nT (1) 30 nS(50000)

7 variance 19 nT (10) 31 nS(65000)

8 std (σ) 20 nT (100) 32 an1

9 µ3 21 nT (500) 33 an2

10 µ4 22 nT (1000) 34 an3

11 coefficient of var 23 nT (5000) 35 an5

12 kurtosis 24 nS(1) 36 an10

Likewise, skewness is a measure of the symmetry of distribution around zero and
is defined as

λ(X) = E
[(X − µ(X)

σ(X)

)3]
=
µ3(X)

σ3(X)
(7)

Harmonic mean is defined as N∑N
i=1 1/Xi

. Interquartile range is calculated based

on the difference between the 75th and 25th percentiles. Shannon entropy is an
information theoretic property of the square of coefficients approximated by their
sample counterparts and calculated as

H(X2) = −
N∑
i=1

X2
i log2X

2
i (8)

Log energy is defined as
∑

logX2
i . nT (α), defined in (9), counts the number

of times that the value of wavelet coefficients exceed the threshold α.

nT (α) =

N∑
i=1

1(|Xi| > α) (9)

In (9), 1(.) shows the indicator function. Also, nS(α) is defined as

nS(α) = N − 2

N∑
i=1

1(X2
i ≤ α2) + 2α2

N∑
i=1

1(X2
i > α2) +

N∑
i=1

[X2
i × 1(X2

i ≤ α2)]

(10)

Finally, anp(X) = p

√∑N
i=1 |Xi|p is the p-norm of the vector of the absolute

values of the coefficients. Hereafter, features 1 to 15 are called as Feature set
1:Statistical, which includes statistical information and features 16 to 36 as Fea-
ture set 2:Entropy, which mainly includes information-theoretic and geometrical
properties of the coefficients.
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3 Feature Selection

Here, we map the coalition game–theoretical methodology to the feature selection
problem by considering the competing features as the game players, where the
features can be classified in different coalitions by noting their impact on the
classifier and also by their interdependency.

3.1 Coalition-based Game-theoretic Feature Selection

Cooperative game theory has been recently utilized in feature selection algo-
rithms [25, 19, 20, 8]. Unlike non-cooperative games in which the players act in-
dividually [2], coalition game refers to a class of game theoretic approaches that
studies the set of joint actions taken by a group of players. These games are
defined based on exhaustive scenarios that players may form a group and how
the total shared payoff is divided among the members. For a transferable utility
coalition (TU–coalition) game with n players, let N denote the set of players,
N = {1, 2, ..., n}. A coalition of players, S defines a sub-set of N , S ⊆ N . In
general, for a n–player game there exists 2n possible coalitions of any size. The
empty coalition is denoted by φ, while grand coalition refers to the coalition of
all players, N .

The n–player coalition game can be defined with the pair of (N, v), where
N = {1, 2, ..., n} is the set of players and the characteristic function, v is a real–
valued function defined on the set of all coalitions, v : 2N → R. For a coalition
S, S ⊆ N , the characteristic function, v(S) represents the total payoff that can
be gained by the members of this coalition. This function satisfies the following
conditions,

– characteristic function of an empty coalition is zero, v(φ) = 0, and
– if Si and Sj , (Si, Sj ⊆ N) are two disjoint coalitions, the characteristic

function of their union has super–additivity property, meaning that v(Si ∪
Sj) ≥ v(Si) + v(Sj).

Here, we model the features as the players of the game, and the characteristic
function of a coalition, v is measured by contribution of its members (features)
to the performance of the classifier (e.g. success rate in supervised learning).
Different possible grouping of the features are examined to recognize the optimal
coalition. The contribution of feature i in classification accuracy when it joins a
coalition S is defined by marginal importance as follows

∆i(S) = v(S ∪ {i})− v(S) (11)

A solution of a coalition game is determined by how the coalition of players
can be formed and how the total payoff of a coalition is divided among the mem-
bers. Let’s define the value function, γ that assigns an n–tuple of real numbers,
γ(v) = (γ1(v), γ2(v), ..., γn(v)) to each possible characteristic function, in which
γi(v) measures the value of player i in the game with characteristic function v. If
the following axioms are satisfied, Shapley value can be utilized as a fair unique
solution of the coalition game [23]. The Shapley axioms for γ(v) are

– Efficiency (group rationality):
∑
i∈N γi(v) = v(N), meaning that the sum-

mation of values for all players is equal to the value of grand coalition.
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– Symmetry: If for players i and j, i, j ∈ N and for every coalition S not
containing i and j we have v(S ∪ {i}) = v(S ∪ {j}), then γi(v) = γj(v).

– Dummy player: If for player i and for every coalition S not containing i, we
have v(S) = v(S ∪ {i}), then γi(v) = 0

– Additivity: For characteristic functions u and v, we have γ(u+ v) = γ(u) +
γ(v), meaning that the value of two games played at the same time is equal
to summation of their values if played at different times.

The Shapley value of player i is defined as the weighted mean of its marginal
importance over all possible subsets of the players.

γi(v) =
1

n!

∑
π∈Π

∆i(Si(π)), (12)

where Π is the set of all n! permutations over N and Si(π) is the set of features
(players) preceding player i in permutation π.

Since in feature selection, the order of features in a coalition does not change
the value of coalition, the calculations in (12), can be further simplified by ex-
cluding the permutation of coalitions in the average:

γi(N, v) =
1

n!

∑
S⊆N/i

∆i(S)|S|i(n− |S| − 1))!, (13)

where S ⊆ N/i represents the coalitions that player i does not belong to. It
is equivalent to the weighted average of coalitions, where the weight of each
coalition is the number of its all possible permutations.

As shown in (12) and (13), the Shapely value solution accounts for all pos-
sible coalitions that can be formed by the players [23]. Since in false alarm
detection problem, the data set includes a large number of features, thereby cal-
culating the Shapley value would be computationally intractable. Furthermore,
considering the coalitions of a large number of features or all of them is practi-
cally unnecessary, since the maximum number of feature may interact with one
another is much less than the total number of features. Therefore, we utilize
the Multi–perturbation Shapley value measurement with coalition sizes up to L
rather than the original Shapely value, which is determined using an unbiased
estimator based on Shapley value [15, 14].

In our proposed algorithm, at each round, the features are randomly divided
into groups of size L. Then, we calculate the corresponding Multi-perturbation
Shapely value of feature i inside its group, γ′i(v) considering all possible coalitions
of size 1 ≤ l ≤ L. This is equivalent to randomly sampling from uniformly
distributed feature i, γ′i(v) is calculated as follows.

γ′i(v) =
1

|ΠL|
∑
π∈ΠL

∆i(Si(π)), (14)

where ΠL denotes the sampled permutation on sub–groups of features of size L.
There is an essential trade–off to set L in the proposed method. Large L values
consider higher order relations, while increasing the complexity of finding Multi–
perturbation Shapely value at each subgroup. We conjecture that the optimum
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Table 2: Alarms definition
Alarm Type Definition

Asystole There is no QRS for at least 4s
Extreme Bradycardia Heart rate < 40 bpm for 5 consecutive beats
Extreme Tachycardia Heart rate higher > 140 bpm for 17 consecutive beats

Ventricular Tachycardia At least 5 ventricular beats with heart rate > 100 bpm
Ventricular Flutter/Fibrillation Fibrillatory, flutter, or oscillatory waveform for at least 4s

value of L for our datasets taking into account various factors such as the nature
of data, number of features, and the inter-feature dependence is in the range of 3
to 6. This is confirmed by simulation results in section 4. It is worth noting that
in most feature selection algorithms, each feature is being considered separately
or equivalently L = 1.

Since the size of subgroups and the role of each group at the classification
for the normalized data is almost equal, at the end of each iteration, the ne less
effective features are removed from the list, regardless of the enclosing subgroup.
In order to minimize the impact of individual grouping, at the end of each itera-
tion, we do not remove all features with Multi–perturbation shapely value below
threshold as in [15]. Rather, we remove only ne features with the lowest Multi–
perturbation Shapely value (if below Multi–perturbation Shapely threshold γm).
We choose ne a small number, because i) the complexity reduces linearly with
ne and ii) the features with lower Multi–perturbation Shapely value may have a
higher impact, when belong to another group in the next iterations. After remov-
ing the less contributing features, we randomly permute the remained features
and repeat regrouping. Therefore, over the long run, the features are most likely
to visit any other features, since L � N . We terminate the algorithm if one of
the following two conditions are violated; i) the minimum number of features nm
is reached or ii) the classification accuracy of all remaining features fall below a
threshold T .

4 Numerical Analysis Results

The database used for this study, which is publicly available through Phys-
ionet [1], was produced by four hospitals in the USA and Europe , using monitors
with different manufacturers, unit–specific protocols, software versions and unit
types. The definition of the alarm is presented in Table 2[1]. The total number of
records is 219 and for each alarm a label including ’true’, ’false’, or ’impossible
to tell’ has been assigned by expert annotators. Interference from pacemakers
and other noise artifacts may be present in the ECG signals.

Experimental results are provided in this section for the proposed alarm
validation method as well as other state–of–the–art explicit feature selection
methods including Chi–square, Gain Ratio, Relief and Info Gain methods. The
Chi–square method evaluates a subset of features by finding their corresponding
chi–squared statistics with respect to the class. The Gain ratio (GR) is an infor-
mation based method that minimizes the conditional entropy of class given the
selected features. The Relief method is an iterative algorithm that starts with an
initial weights for features and then iteratively adjusts the weights by randomly
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Fig. 1: True alarm recognition rate for the first 30 features using different feature
selection methods with Bayes Net classification.

choosing an instance from data and weighting each feature based on its corre-
sponding distance between the selected data instance and the closest instances
in different classes to highlight features with higher discriminative properties.
The Information Gain Ratio maximizes the mutual information between the
selected features and the class labels. The numerical results are obtained utiliz-
ing the proposed coalition–game theoretic method where the multi–perturbation
Shapley value is calculated for coalitions’ size up to 4, L = 4.

The alarm typing rate for all feature selection methods are evaluated in
combination with Bayes Net classification as a representative classifier. In all
simulations, the 30 most informative features are selected to compare the perfor-
mance of different feature selection techniques. The comparison results in Fig.
1 suggest a considerable improvement for the proposed method in discarding
the false alarms compared to the competitor methods. The alarm typing success
rate for the proposed method is about 75% meaning that only 25% of alarms
are deemed false, whereas the false alarm report rate for the best competitor
method (Gain Ratio) is at least 100 − 68.88% ≈ 31%. The improvement is due
to potential synergy impact of coalitions among features which is overlooked or
not directly addressed in other methods. The proposed method outperforms the
case of incorporating all wavelet coefficients (represented by None in Fig. 1) due
to eliminating the irrelevant features. Another important observation in Fig. 1
is the obtained success rate using feature set 1 (Statistical features) is slightly
better than that of feature set 2 (Entropy–based features), meaning that feature
set 1 provides more useful information in recognizing the true alarms. Interest-
ingly, this is consistent among all feature selection methods. Although feature
set 2 is relatively successful in identifying the true alarms, however adding it to
the statistical features does not enhance alarm typing success rate suggesting
that it does not bear additional information. It is notable that the promising
rate of 75% is obtained using only 30 statistical features for any subject, which
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(a) Chi–Square (b) Gain Ratio (c) RELIEF

(d) Info Gain (e) Shapley (f) Average

Fig. 2: Average appearance of the 15 extracted statistical features in the six
DWT levels for three ECG, PLETH and APB signals

significantly reduces the risk of over–fitting compared to using all 18000 wavelet
coefficients for each signal.

Fig. 2 presents the average appearance of the 15 extracted statistical features
in the six DWT levels for three ECG, PLETH and APB signals in identifying
alarm validity for different feature selection methods. The average over all meth-
ods is also depicted in Figure 2. This figure reveals that all statistical properties
contribute almost equally to the false alarm recognition. However, there is a sig-
nificant difference in the contribution of various signal source levels. The average
appearance of statistical features and signals are re–depicted in Fig. 3. It is clear
from the results in Fig. 3 that the first level of discrete wavelet transform for
ECG and PLETH signals play a more significant role in the alarm validation.
Indeed, the collective contribution of levels 2 to 6 are less than the contribu-
tion of level 1 solely. However, all levels of signal APB signal contribute almost
equally for alarm recognition.

5 Conclusion

In this paper, we proposed a novel coalition–based game theoretic model to im-
prove the accuracy of false alarm detection as one of the critical yet unresolved
concerns in intensive care units. In this study, the three signals of ECG, PLETH
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(a) Average appearance of statistical fea-
tures

(b) Average appearance of different DWT
levels for three signals of ECG, PLETH,
APB

Fig. 3: Average results for different feature selection techniques

and ABP from Physion Net’s MIMIC II database were considered. First, each
of these signals were decomposed into 6 levels using discrete wavelet transform,
resulting in total of 18 vectors for each patient. Then, several statistical and
information–theoretic features were extraced from these wavelet decomposed
vectors in order to reduce the computational complexity and lower the possibil-
ity of overfitting in false alarm detection. Finally, these features were fed to the
proposed game–theoretic feature selection method as the players of a coalition
game. The impact of each feature in the game was defined as its contribution
to improve the false alarm detection accuracy in interaction with other features
when they form a coalition and it was measured by Multi–perturbation Shapely
for coalitions of size 4. The proposed model can be applied to any commonly used
classification methods. The numerical results in this paper were presented for
Bayes Net classification technique. The results show the significant performance
of the proposed model in false alarm detection comparing to other feature selec-
tion techniques including Chi–square, Gain Ratio, Relief and Info Gain methods.
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