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Abstract—This paper considers the problem of delay-optimal
bundling of the input symbols into transmit packets in the entry
point of a wireless sensor network such that the link delay is
minimized under an arbitrary arrival rate and a given channel
error rate. The proposed policy exploits the variable packet length
feature of contemporary communications protocols in order to
minimize the link delay via packet length regularization. This is
performed through concrete characterization of the end-to-end
link delay for zero-error tolerance system with first come first
serve (FCFS) queuing discipline and automatic repeat request
(ARQ) re-transmission mechanism. The derivations are provided
for an uncoded system as well as a coded system with a given bit
error rate. The proposed packetization policy provides an optimal
packetization interval that minimizes the end-to-end delay for a
given channel with certain bit error probability. This algorithm
can also be used for near-optimal bundling of input symbols for
dynamic channel conditions provided that the channel condition
varies slowly over time with respect to symbol arrival rate. This
algorithm complements the current network-based delay-optimal
routing and scheduling algorithms in order to further reduce
the end-to-end delivery time. Moreover, the proposed method is
employed to solve the problem of energy efficiency maximization
under an average delay constraint by recasting it as a convex
optimization problem.

Index Terms—Packetization policy, cross-layer optimization,
channel adaptation, delay analysis, queuing systems.

I. INTRODUCTION

I N a variety of wireless applications, the pivotal design
objective is to minimize the end-to-end latency or to ensure

a predefined delay constraints [1]–[6]. For instance, in a vari-
ant of sensor networks, the arrival packets are marked outdated
if the age of information (the timespan from data generation
at sensor nodes until delivery to the processing unit) exceeds
a predefined limit. This constraint imposes a hard limit on the
system end-to-end delay [7]. Majority of these studies focus on
developing optimal routing and scheduling policies performed
in higher network layers. A common presumption in such meth-
ods is that the per-link throughput and delay parameters of
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a given transmission technique are physical layer parameters,
which are mainly determined by out-of-control channel condi-
tions such as noise and interference levels as well as the local
user traffic statistics, therefore can not be improved by varying
higher layer parameters [4], [8]. In this work, we provide a time-
based packetization policy for the entry point of the network
that combines the input symbols (e.g. a sensor measurements
in a wireless sensor network) into transmit packets such that
the resulting per-link delay is minimized by regularizing packet
lengths. This algorithm can be used in combination with the
current in-network delay-optimal scheduling policies to further
minimize the end-to-end delay.

In a packet-based transmission system, a larger packet size
reduces the packetization overhead. This overhead may be due
to the packet header (e.g. addressing bits, control bits, and CRC
codes), channel setup time, or even channel contention period
in wireless networks with opportunistic scheduling [9]–[11].
The lower overhead translates to a shorter average transmission
time for each data symbol. On the other hand, longer packets
may increase the transmission time by imposing longer packet
formation time, since the payload data is not accessible at the
destination until a packet is formed at the transmitter and is
fully delivered to the destination. Moreover, in a noisy environ-
ment with a certain bit error probability, a longer packet size
increases delay by elevating re-transmission rate [12]–[15]. In
other words, packet length has two contradictory effects on the
end-to-end latency per symbol. Addressing this essential trade-
off and finding the optimum packet length is a key factor to
improve the communication efficiency, which has been mostly
overlooked in the conventional system designs.

Old generation communication protocols such as GSM and
ATM permit only fixed-length packets. However, the contem-
porary communication protocols such as IEEE 802.16 and IPv6
allow variable length packets to more efficiently adapt to user
traffic demands [16]–[18]. In this paper, we exploit this fea-
ture to improve the average packet delivery time for wireless
networks.

Recently, several attempts have been made to increase com-
munication efficiency by customizing packet lengths based on
the channel quality factors. For instance, the idea of local packet
length adaptation is introduced in [19] in order to maximize
throughput in WLAN channels. An approximate blocking prob-
ability is found for general packet length distributions in [20].
The impact of packet lengths on other performance metrics such
as latency, communication range and energy efficiency is also
studied in [12], [21], [22]. However, the impact of packet length
on the end-to-end data delivery time yet to be comprehensively
studied, although it is implicitly addressed by re-transmission
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probability minimizations [23]–[26]. Besides, most previously
reported approaches for wireless Ad-hoc networks consider the
saturated traffic model and aim at optimizing throughput and
delay by solely reducing the number of dropped packets while
ignoring the queuing dynamics. The saturated traffic model
does not cover random traffic in most real-world applications
such as web-based applications and Ad-hoc sensor networks.
Therefore, we consider a probabilistic traffic model, where a
stream of input symbols (e.g. measurements of a data source
in a sensor network) are generated according to a Poisson
process.

In the proposed packetization policy, we aim at regulariz-
ing the packet lengths at the entry point of a wireless sensor
network, when the measurement data is bundled into transmit
packets and is injected to the network in order to minimize
the per-link delay for a given channel error rate and input
traffic rate. This is performed by characterizing the impact of
the packet length on queuing dynamics, re-transmission rate
and consequently the end-to-end delay. We consider a single-
hop communication system with a First Come First Serve
(FCFS) scheduler, an unlimited buffer size and an Automatic
Repeat Request (ARQ) re-transmission mechanism. Although
simple, this model highlights and solves the relevant trade-
offs and provides insights for more general systems [27]. In
particular, this model can be deployed at the entry point of
sensor networks, where the sensor measurement symbols are
formed into transmit packets. Furthermore, it can be integrated
with delay-optimal scheduling techniques for multi-hop com-
munications. In addition to end-to-end delay analysis, we also
characterize the required energy per unit symbol for scenar-
ios with energy efficiency optimization under delay constraint
requirements.

A time-based aggregation policy is proposed in [28] to opti-
mally combine the Poisson-distributed arrival packet bursts for
optical networks application. In contrast, we focus on packet
generation from the arrival samples and consider the impact
of header size and packet re-transmissions. This work is also
closely related to [29], [30], where the packets in the buffer
are bundled into batches up to a certain number and are trans-
mitted after random linear coding over a noisy channel. The
service of a batch is completed when all the containing pack-
ets are recovered at the destination. Controlling the number of
packets in each linear coding block in [29] is analogous to defin-
ing the number of symbols per packets in our proposed scheme.
However, the main differences between this work and [29], [30]
are: i) the packet arrival process being Poisson instead of late
arrival Bernoulli distribution; ii) considering packet success rate
dependency on the indirectly controlled packet length in our
scheme; and iii) studying the effect of packetization overhead
in delay analysis.

The rest of this paper is organized as follows. In section II,
the system model is presented. In section III, the problem
of channel adaptive packetization policy is formulated and
the end-to-end latency is analyzed via characterizing vari-
ous delay elements for a time-based packetization policy. The
delay-optimal packetization criterion is found in section IV.
Simulation results are provided in section V, followed by
concluding remarks in section VI.

TABLE I
NOTATION SUMMARY

Fig. 1. System model: the fixed-length input symbols {X1, X2, X3, . . . } with
arrival rate of λ are combined into transmit packets and are scheduled in a
FCFS buffer for transmission over a single-hop uncoded wireless channel with
bit error probability β.

II. SYSTEM MODEL

Before elaborating on the system model, the notation style
used in this manuscript is summarized. Lowercase boldface let-
ters are used for scalar random variables, the capital letters for
constants and fixed parameters, the lowercase letters for vari-
ables and realizations of random variables, unless otherwise
specified explicitly. Subscripts are used to note symbol and
packet indices and postscripts are only used for power operation
or as type identifier. A summary of the parameters is presented
in Table I.

A sequence of N -bit symbols {Si }∞i=0 arrives at the input of
transmission system according to a Poisson process with rate λ.
The symbols are combined into packets with a constant header
size H , then scheduled in an infinite length queue with FCFS
discipline and transmitted through a wireless channel with bit
rate R to the destination, as depicted in Fig. 1.

In order to bundle the symbols into the transmit pack-
ets, we adopt a time-based packetization policy, where the
time axis is partitioned into consecutive equal packetization
intervals of size T . The kn symbols that arrive at the nth inter-
val [(n − 1)T, nT ) = {t |(n − 1)T ≤ t < nT } are combined to
form a single transmission packet Xn and is scheduled for trans-
mission. We propose two different implementation modes. The
distinction between these modes is the way we handle the inter-
vals with zero arrival symbols. In mode 1 (efficient mode), no
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Fig. 2. Time-based packetization policy: symbols arive at a packetization inter-
val are combined to form transmit packets with constant header sizes. If no
symbol is arrived at a packetization interval, packet formation is postponed to
the subsequent interval in mode M 1, whereas a dummy packet of length H is
send in mode M 2.

packet is sent for zero symbol accumulation and hence for-
mation of the transmit packet is postponed to the subsequent
intervals. Therefore, the inter-arrival for packet n, denoted by
τ n can be multiples of packetization interval, T . This mode is
more efficient and achieves higher channel utilizations in prac-
tice. However, in mode 2 (slotted mode) a dummy packet of size
H is sent for zero symbol accumulation and we have τ n = T .
This approach is desired for slotted systems with a constant-
length time slot and has the advantage of easy synchronizations
and less complex analysis. We represent the two modes with
M 1 and M 2 for the sake of brevity. In this article, the main
focus is on the efficient mode (i.e. M 1), but we occasionally
mention the difference with the slotted mode (i.e. M 2). Both
packetization modes are depicted in Fig. 2.

The number of bits in the nth packet, ln = H + kn N is fully
determined by the number of encapsulated symbols kn . For
slotted mode M 2, it is clear that ln is Poisson distributed. In
efficient mode M 1, however the packet inter-arrival time τn

can span over mn = 1, 2, 3, . . . intervals, where all the symbols
arrive at the last interval. Therefore, we have

P(ln = H + k N ) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑∞
mn=1 P(ln = H + k N , τ n = mnT )

= ∑∞
mn=1(Pkn (0))mn−1e−λT (λT )k

k!
= e−μμk

(1−e−μ)k! , k = 1, 2, 3, . . . (M 1),

e−μμk

k! , k = 0, 1, 2, . . . (M 2),

(1)

where μ = λT is the average number of symbols in an interval
of length T . The summation in the efficient mode M 1 is over
various lengths of the packet inter-arrival time.

It is noteworthy that the packet formation time for each
packet in the efficient mode M 1 is solely defined by the arrival
of the first symbol after the preceding packet formation epoch,
whereas the packet length is defined by the number of contain-
ing symbols or equivalently the number of symbols that arrive
after the first symbol and before the end of the current packeti-
zation interval. For instance, in Fig. 2, symbol A arrives in the
second interval after packet 1 formation epoch, which delays
the packet 2 formation to the end of the second interval with

respect to packet 1 formation epoch. However, the length of
the second packet is 3N + H , which is defined by the arrival
of symbols B and C after symbol A and before the end of the
current packetization interval. Inter-arrival times between the
symbols are independent due to the memoryless property of
Poisson arrival process. Consequently, the length of packets are
independent form their formation time with respect to the pre-
ceding packet. This property is also apparent form Eq (1). For
slotted mode M 2, the independence of packet lengths and the
inter-packet times are trivial, since the inter-packets times are
fixed. The independence of packet lengths and the inter-packet
times simplifies the queuing system analysis through legitimate
use of Kingman’s formula [31].

The resulting packets are transmitted over a single-hop
uncoded wireless channel with bit error probability of β. For
zero error tolerance scenario, the probability of packet error
pe

n for packet n with length ln is a random variable (r.v.) and
defined as1

pe
n = 1 − (1 − β)ln = 1 − αln , (2)

where α = 1 − β is bit success probability used for notation
convenience in the subsequent equations. The erroneous pack-
ets are successfully detected at the destination using CRC codes
and are re-transmitted using ARQ scheme with instantaneous
feedback channel until they are successfully delivered to the
destination. The number of transmissions for packet n, denoted
by rn ∈ {1, 2, 3, . . .} is a Geometrically distributed r.v. and
depends on the packet length ln and bit success probability α

as follows:

Prn |ln (r |ln = l) = αl(1 − αl)r−1. (3)

Hence, the expected value of number of re-transmissions can
be simply found by calculus of power series as follows:

Ern |ln [r |ln = l] =
∞∑

r=1

r Prn |ln (r |l = l)

=
∞∑

r=1

rαl(1 − αl)r−1 = α−l . (4)

The i th symbol of the nth packet experiences the end-to-end
delay di , which includes packet formation delay, waiting time
and service time, denoted by fi , wi and si , respectively. Packet
formation delay fi is the time difference between the symbol
arrival epoch and the corresponding packet formation epoch.
Thus, may be different for symbols inside a packet. Whereas,

1The above equations are derived for uncoded system, where the packets
include only information bits. In more sophisticated protocols, different cod-
ing schemes for header part and payload data may be used [32], [33]. If the
coding rates are RD and RH for Data and Header with respective bit error
probabilities of βD and βH , then one needs to incorporate the following mod-
ifications: ln = kn N/RD + H/RH and pe

n = 1 − (1 − βH )H (1 − βD)kn N .
The rest of equations remain unchanged. In fact, setting RD = RH = 1 and
βH = βD = β, these equations reduce to the derived equations. In the above
derivations, we followed the popular approximation of using bit and packet
error rates as reliable surrogates for bit and packet error probabilities. Since the
above modifications do not change the subsequent analysis, we stick with an
uncoded system in the rest of the paper for the sake of notation convenience.
However, simulations results are included for a coded system in section V.
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wi and si are packet-based delays and are equal for all sym-
bols in packet n and account for waiting and service times
for both primary and retransmit periods. Therefore, we have
wi = wn and si = sn for all symbols i forming packet n. The
goal is to find the optimal packetization policy that minimizes
the expected average delay based on detail characterization of
different delay terms. Under stability conditions, in stationary
states the expected delay of packets are equal and so is the
expected delay of the samples (E[d] = E[di ]). Moreover, due
to the ergodicity of the queue, we use the time average of the
symbols delays obtained from simulations in section V to com-
pare with analytically derived expression for expected delay
E[d] using the following relation:

E[d] = E[di ] = lim
t→∞

1

M(t)

M(t)∑
i=1

di , (5)

where M(t) = max {i : ti < t} is the number of symbols
arrived by time t .

III. DELAY TERMS IN TIME-BASED FRAMING POLICY

In this section, various delay terms for the proposed time-
based packetization policy are evaluated.

A. Packet Inter-Arrival Time

The interarrival times between transmit packets are constant
in the slotted mode and hence we have a deterministic packet
generation process τ n = Tn − Tn−1 = T with the following
moments for interarrival times:

τ n = T �⇒ E[τ n] = T, E[τ 2
n] = T 2, σ 2[τ n] = 0 (M 2).

(6)

However, in the efficient mode, the time between two packe-
tization epochs, τn can be extended to multiples of the pack-
etization interval T . Note that τ n = mnT, mn = 1, 2, 3, . . .

corresponds to zero symbol accumulation at the first mn − 1
intervals followed by an interval with nonzero arrival symbols.
Therefore, τ n is Geometrically distributed with fail parameter
P0 = e−λT and we have the following first and second order
moments for service time:

P(τ n = mnT ) = Pmn−1
0 (1 − P0), mn = 1, 2, 3, . . .

�⇒ E[τ n] = 1

1 − P0
T, E[τ 2

n] = 1 + P0

(1 − P0)2
T 2,

σ 2[τ n] = P0

(1 − P0)2
T 2, (M 1). (7)

B. Service Time

Now, we proceed to characterize service time, denoted by s
for M 1. For derivation simplicity, we first consider an equiv-
alent system, where at each interval a packet of possibly zero
size is formed. The auxiliary service time s̃ is defined for this
equivalent system, such that a virtual dummy packet of length 0

is generated for zero symbol accumulation during a packetiza-
tion interval. The actual and auxiliary service times are related
as follows

s̃n =
{

sn for k �= 0 with probability 1 − P0 = 1 − e−μ

0 for k = 0 with probability P0 = e−μ
(8)

The length of packets at this equivalent system is l̃n =
h(kn)H + kn N , where h(.) is step function defined as

h(kn) =
{

1 kn > 0,

0 kn ≤ 0.
(9)

Note that kn = M(iT ) − M(iT − T ) ∈ {0, 1, 2, . . .} is a
nonnegative Poisson distributed integer with mean μ, hence we
have

P(l̃n = h(k)H + k N ) = P(kn = k) = e−μμk

k! ,

k = 0, 1, 2, . . . . (10)

The service time of a packet of length l̃n accounts for sending
l̃n bits over the channel, which might be repeated for r times
due to the ARQ re-transmission mechanism. Noting the fixed
transmission rate R bit/sec, in (3) and packet length probability
mass function (pmf) in (10), the following pmf is derived for
service time, s̃n :

P [s̃n = r

R
. (h(k)H + k N )

]
= P

[
s̃n = r

R
. (h(k)H + k N ) |kn = k

]
P[kn = k]

= P [rn = r |kn = k]P[kn = k]

= αH+k N
[
1 − αH+k N

]r−1
e−μ μk

k! ,

r = 1, 2, 3, . . . ; k = 0, 1, 2, . . . . (11)

Substituting h(.) in eq (11), it converts to the following
expression:

P[s̃n] =

⎧⎪⎨
⎪⎩

αH+k N
[
1 − αH+k N

]r−1
e−μ μk

k! ,
for s̃n = r(H+k N )

R , r, k = 1, 2, . . . ,∞,

e−μ, for s̃n = 0.

(12)

The countable discrete support set of s̃ is S̃ = {0} ∪ {r(H +
k N )/R : r, k = 1, 2, 3, . . .}. Likewise, we have the following
pmf of s considering equation (8):

P

[
sn = r(H + k N )

R

]
= αH+k N

[
1 − αH+k N

]r−1

1 − e−μ
e−μ μk

k! ,

for r, k = 1, 2, . . . ,∞, (13)

with the same support set excluding {0}. A typical pmf of sn is
depicted in Fig. 3. It is noticeable that the pmf presents a comb-
like shape and is not a monotonic function. In fact, if we fix
the number of encapsulating symbols kn , the packet length is
ln = kn N + H and the service time conditioned on the number
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Fig. 3. Probability mass function of service time (N = 8, H = 20, λ = 1, β =
0.02, R = 1).

of symbols is geometrically distributed with success parameter
αln due to re-transmission occurrence. This is highlighted in red
color in Fig. 3 for kn = 3. On the other hand, for a given number
of re-transmissions rn , service time is proportional to the packet
length and hence demonstrates a Poisson-like conditional dis-
tribution, which is marked with blue color in Fig. 3 for rn = 2.
The unconditional pmf of sn can be viewed as the interlace of
a series of Geometrical distributions scaled with Poisson func-
tions (or vice versa). This pmf is used in the sequel to derive the
moments of service time as required delay analysis parameters
as follows.

Proposition 3.1: Service time sn in efficient mode has the
following first and second order moments:

E[sn] = Ne−μ(
1 − e−μ

)
RαH

[(
η + μα−N

)
eμα−N − η

]
, (14)

E[s2
n] = N 2e−μ

(1 − e−μ)R2αH

[(
2μα−2N + 2μ2α−4N

+ 4ημα−2N + 2η2
)
α−H eμα−2N −

(
μα−N + μ2α−2N

+ 2ημα−N + η2
)

eμα−N + η2
(

1 − 2α−H
)]

, (M 1)

(15)

where the header overhead η = H/N is defined as the ratio of
header size to symbol size.

Proof: See Appendix. �
The above derivation is obtained for the efficient mode based

on postponing packet formation to an interval with non-zero
arrival symbols. In order to obtain service time distribution for
the slotted mode, we repeat the same procedure with setting
s̃n = sn in (8) and replacing the indicator function h(.) with
unity function h(.) = 1 in (9). Consequently, we have l̃n = ln
and characterizations of sn in (13) encounters the following
modification:

P

[
sn = r(H + k N )

R

]
= αH+k N

[
1 − αH+k N

]r−1
e−μ μk

k! ,

for r = 1, 2, 3 . . . ; k = 0, 1, 2 . . . (16)

Therefore, the following simplified expressions for the
moments of sn are obtained after some algebraic manipulations.

E[sn] = Ne−μ

RαH

[
(η + μα−N )eμα−N

]
, (M 2) (17)

E[s2
n] = N 2e−μ

R2αH

[(
2μα−2N + 2μ2α−4N + 4ημ.α−2N + 2η2

)
.α−H eμα−2N −

(
μα−N + μ2α−2N + 2ημα−N + η2

)
eμα−N

]
.

(18)

Note that equations (17), (18) are equivalent to (14), (15) for
large enough μ, since the distinction between two packetiza-
tion modes is due to intervals with zero arrival symbols whose
probability of occurrence diminishes for μ 
 1.

Remark: There are two extreme cases for packetization inter-
val length, T . In the slotted mode, when packetization interval
is chosen very small, (μ → 0), then approximation (e−μ ≈
1 − μ ≈ 1) implies E[sn] ≈ (H+N )

RαH+N . In this case, the impact
of H on the service time is as large as N , since most packets
include only one symbol and their lengths are N + H . On the
other hand, for extremely large packetization interval (μ → ∞)

and finite N and H , we have Nμ 
 H . After some mathemat-
ical manipulation we have E[sn] ≈ Nμ

RαN+H e−μ(1−α−N ). In this
case, each packet includes a large number of symbols and the
impact of header size on the service time is negligible. In par-
ticular, for error-free channel, we have α = 1 − β = 1, hence
service time is reduced to Nμ

R , which grows linearly with T .
This is shown in simulation results presented in section V.

C. Packet Formation Delay

To account for the packet formation delay in efficient mode,
we recall Poisson arrivals of symbols during a framing inter-
val T , as depicted in Fig. 2. If kn , an and τ n are the number
of containing symbols, arrival time, and inter-arrival time of the
packets, then for all containing symbols {Sni |an−1 ≤ tni < an},
we define the packet formation delay fni as the time span
between the symbol arrival epoch tni and the packet formation
epoch an. The expected value of the average packet formation
delay in any packetization interval is:

E[fni ] = Ekni

[
E[fni |kn arrivals]

]
(19)

Noting the memory-less property of exponential distribution,
if we choose a packetization window of length T in a random
location such that the window encompasses kn symbols, then
the packetization interval includes kn + 1 symbol inter-arrival
times θni , two of which (θn1 and θnk+1) are truncated at both
ends as depicted in Fig. 4. Therefore, the expected value of
average packet formation delay can be calculated as follows,

E[f̄|kn = k] = E

⎡
⎣1

k

nk∑
i=n1

fi

⎤
⎦= E

⎡
⎣1

k

nk∑
i=n1

⎛
⎝1

2
θnk+1 +

nk∑
j=i+1

θi

⎞
⎠
⎤
⎦

= 1

k

nk∑
i=n1

⎛
⎝1

2
E[θnk+1] +

nk∑
j=i+1

E[θi ]

⎞
⎠

= 1

k

(
k

1

2
+ k(k − 1)

2

)
1

λ
= k

2λ

�⇒ E[f̄] = 1

2λ
E[kn] = 1

2λ
.λT = T

2
(20)
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Fig. 4. Packetization interval: packet formation delay fni is defined as the time
span from the symbol arrival time to the end of current packetization interval an .

This is consistent with the memoryless and i.i.d properties of
inter-arrival distributions. Since it allows us to interchange-
ably calculate expected distance from either sides of the frame,
which in turn implies: E[

∑n1+k−1
i=n1

fi ] = E[
∑n1+k−1

i=n1
(ti −

an−1)] = kT − E[
∑n1+k−1

i=n1
fi ] �⇒ E[

∑n1+k−1
i=n1

fi ] =
kT/2 �⇒ E[fi ] = T/2 [34], [35]. Consequently, the packet
formation delay is linearly proportional to packetization inter-
val as was expected.

D. Queuing Dynamics

For the nth transmit packet Xn , the arrival, service and
waiting times are presented by an , sn , and wn , respectively.
The inter-arrival time is also denoted by τ n = an − an−1, as
depicted in Fig. 2. The waiting time for the nth packet wn is a
non-negative value and can not exceed the difference between
the current inter-arrival time (τ n) and the sojourn time of
the previous packet (wn−1 + sn−1), hence the following well
celebrated Lindley’s equation holds [36]:

wn = [wn−1 + sn−1 − τ n]+, (21)

with initial condition w0 = 0 and (x)+ = max(0, x). We
already showed in (1) that the packet length and packet inter-
arrival times are independent, which implies the independence
of service time sn and waiting time τ n . Therefore, we have

P(wn = w, τ n ≤ t |w0, w1, . . . , wn−1, τ 0, τ 1, . . . τ n−1)

= P(wn = w, an+1 − an ≤ t |wn−1). (22)

This means that the process {w, τ } � {wn, τ n} forms a renewal
Markov Process. To find the transition kernel for the embedded
Markov chain {wn}, we note

P(wn = wn|wn−1 = wn−1, τ n = τ)

= fs(wn − wn−1 + τ)u(wn) +
∑
s∈S

0≤s≤max(0,τ−wn)

fs(s)δ(wn),

(23)

where u(.) and δ(.) are step and Dirac impulse functions and
fs(s) is pmf of serive time, sn defined in (11). The first term
in (23) accounts for the case where packet n arrives before
packet n − 1 service is completed (i.e. wn−1 + sn−1 − τ n >

0). Therefore, wn = wn−1 + sn−1 − τ n is a positive value
which occurs for sn−1 = wn − wn−1 + τ . The second term is
corresponding to the case where the packet n arrives after

completeion of packet n service and we have 0 ≤ sn−1 ≤
max(0, τ − wn−1). In this case, packet n does not experience
any waiting and wn = max(0, wn−1 + sn−1 − τ n) is mapped to
0. Noting that τ n follows Geometric distribution, (23) yields the
following transition kernel:

P(wn = wn|wn−1 = wn−1)

=
∞∑

m=1

P(wn = wn|wn−1 = wn−1, τn = mT )P(τn = mT )

=
∞∑

m=1

(1 − e−μ)e−(m−1)μ

⎡
⎢⎢⎣ fs(wn − wn−1 + mT )u(wn)

+
∑
s∈S

0≤s≤max(0,mT −wn)

fs(s)δ(wn)

⎤
⎥⎥⎦ , (24)

This transition kernel is well defined for a given fs(s) and is
used in Monte Carlo simulations in section V.

E. Stability Condition

The transition kernel in (24) states the evolution of queuing
delays until it reaches the stationary state. It has been shown
that for such a system, the stability is granted if the embedded
Markov process complies the sufficient condition of ergodicity
defined in [37], [38] as follows

E[sn − τ n] < 0. (25)

Therefore, T must be chosen such that E[s] < E[τi ] is sat-
isfied. Substituting (7), (14) in (25), we have the following
stability conditions:

(H + Nμα−N )e−λT (1−α−N ) − He−λT

(1 − e−λT )RαH
≤ T

1 − e−λT

⇐⇒ R ≥
e−λT

[
(H + NλT α−N )eλT α−N − H

]
αH T

(26)

Equation (26) provides a closed-form expression for minimum
channel rate with stable queue, if the packetization interval
T is fixed. It also provides a lower bound on T , for a given
channel rate, which can be solved numerically or evaluated
approximately. For error free channel α = 1, this simplifies to

R ≥ (H + NλT ) − He−λT

T
. (27)

To find the necessary conditions on channel rate R, we consider
two extreme cases of short and long packetization intervals.
If T → ∞, (27) yields: R ≥ Nλ, which is the rate capable
of handling long packets with negligible overhead bits. The
other extreme case occurs when T → 0, where each symbol
forms a packet of length H + N upon arrival. In this case,
we have e−μ ≈ 1 − μ and (27) is reduced to R ≥ (N + H)λ.
If R ∈ [Nλ, (N + H)λ]. There exists a subset of T such that
the queue is stable and we can obtain arbitrary near optimal
throughput of ρ = E[s]

E[τ ] → 1−. For R ≤ Nλ, there is no T that
satisfies the stability conditions and for R ≥ (N + H)λ, all T
values produce a stable queue.



RAZI et al.: CHANNEL-ADAPTIVE PACKETIZATION POLICY FOR MINIMAL LATENCY AND MAXIMAL ENERGY EFFICIENCY 2413

F. Expected Waiting Time

Equation (25) ensures that Markov chain {wn} is recurrent
and positive or equivalently the Markov process {wn, τ n} is

regenerative. If we set v0 = 0 and v j =
n∑

i=n− j+1
(si − τ i ), by

recurrence, we can rewrite (21) as follows [36], [39]

wn+1 = max(v0, v1, . . . , vn). (28)

One may interpret wn in (21) as the maximum of accumu-
lated backward steps for a random walk process back to an
arbitrary time between 0 and n. For a stable queue satisfying
(25), we have limn→∞ E[vn] = nE[s − τ ] < ∞. Hence, wn

tends to a r.v. w = sup
i

vi , as n approaches infinity. Therefore,

(21) yields

E[w] = E[(w + s − τ)+], (29)

σ 2[w] = σ 2[(w + s − τ)+]. (30)

The transition kernel in (24) does not provide a closed form
equation for expected waiting time, E[w], but sampling meth-
ods such as Markov-Chain Monte Carlo (MCMC) can be used
for numerical evaluation of E[w] for given parameters. Here,
we use the well-celebrated approximate method of Kingman’s
formula for G/G/1 queues to obtain the closed-form expression
for E[w] [31]. Noting the inter-arrival time distribution in (7),
we have

E[w] ≈ ρE[s](C2[s] + C2[τ ])

2(1 − ρ)

≈ (E[s])2 (1 − e−μ)

T − E[s](1 − e−μ)
.
C[s]2 + C[τ ]2

2
(31)

where C[x] = σ [x]/E[x] is the coefficient of variation of r.v.
x and ρ is the utilization factor of queue defined as ρ =
E[s]/E[τ ] = E[s](1 − e−μ)/T .

Substituting (14), (15) in (31) and noting that C2[τ ] =
(σ [τ ]/E[τ ])2 = e−λT , equation (31) provides a closed form
equation for waiting time. The simulation results provided in
section V confirm the accuracy of the proposed analysis.

IV. OPTIMAL PACKETIZATION INTERVAL

In stationary situations, as mentioned in section III, wi → w.
Noting stationary property of si and fi , the overall delay term
di also approaches a r.v. d = s + w + f. Substituting (29), (20)
in (5), results in

E[d] = lim
t→∞

1

M(t)

M(t)∑
i=1

E[di ] = E[di ]

= E[wi ] + E[si ] + E[ fi ]

≈ (E[s])2 (1 − e−μ)

T − E[s](1 − e−μ)
.
C2

s + C2
τ

2
+ E[s] + T/2. (32)

Substituting moments of service time and inter-arrival times
defined in (7), (14), (15) in (32) provides a closed form expres-
sion for the end-to-end delay in terms of (N , H, β, T ). The

convexity of (32) with respect to T can easily be verified by
checking positivity of the second derivative, which is straight-
forward but involves many terms. This was also confirmed by
numerical evaluation as depicted in Fig. 8. Equating deriva-
tive of (32) with respect to T to zero ( ∂E[d]

∂T = 0) provides
the optimum packetization interval T ∗, which minimizes the
end-to-end latency E[d]. Note that convexity is not a necessary
requirement, since the closed form expression enables finding
the global minimum using numerical methods such as gradient
descent algorithm. We discuss some special cases next.

A. Error-Free Channel

The expression in (32) is a complex expression in gen-
eral. However, for some reasonable assumptions, it can be
further simplified. For instance, we analyze the system for
an almost error-free channel, where α = 1 − β → 1. In order
to analyze the delay variations, we consider two extreme
cases for μ. For μ = λT 
 1, we use the approximations
e−μ ≈ 0 and 1 − e−μ ≈ 1. In this case, we can use approx-
imation α−k N = 1

αk N ≈ 1
1−k N (1−α)

≈ 1 + k Nβ, which arises

from Taylor expansions of α−k N around α = 1. Using these
approximations and keeping dominant terms, the moments of
service time derived in (14), (15) for (α → 1, μ → ∞) are
simplified to:

E[s] = Ne−μ

(1 − e−μ)RαH

[
(η + μα−N )eμα−N − η

]

≈ Nμe−μ(1−α−N )

RαH+N
≈ NμeμNβ

RαH+N
,

E[s2] ≈ N 2e−μ

(1 − e−μ)R2αH

(
2μ2α−4N

)
α−H eμα−2N

≈ 2μ2 N 2e−μ(1−α−2N )

R2α2H+4N
≈ 2μ2 N 2e2μNβ

R2α2H+4N

�⇒C2[s] = E[s2] − (E[s])2

(E[s])2
≈ 2α−2N − 1 ≈ 1 + 4Nβ

(33)

Obviously, E[s] and E[s2] are convex increasing functions
of μ. Substituting the above approximations in (32) and not-
ing C[τ 2] ≈ P0 ≈ 0 for μ 
 1, we obtain the following closed
form expression for E[d]:

E[d] ≈ (E[s])2 C2[s]

2(T − E[s])
+ E[s] + T/2

≈ NμeμNβ

RαH+N

[
(1 + 4Nβ)NμeμNβ

2T RαH+N − 2NμeμNβ
+ 1

]
+ T/2

(34)

which is also a convex and increasing function of μ by sim-
ple inspection, since f (g(x)) = g(x)

T −g(x)
is an increasing convex

function of x for positive increasing convex function g(x), pro-
vided that the denominator remains positive [40]. The positivity
of the denominator is ensured by stability conditions of the
queue. In this case, E[d] grows exponentially with μNβ.

For the other extreme case of μ = λT → 0 for error free
channel (α → 1), we can use approximation e−λT ≈ 1 − λT ≈
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Fig. 5. Expected delay E[d] vs packetization interval λT : approximations
for extremely large and small packetization intervals (N = 8, H = 16, λ =
10, β = 10−3, R = 2 × 103).

1 and eλT α−k N ≈ 1 + λT α−k N ≈ 1 + λT (1 + k Nβ). Hence,
the moments of s after removing second order terms of μ and β

become

E[s] ≈ (N + H)e−μ

RαH
, E[s2] ≈ (H + N )2 e−μ

R2αH

�⇒ C2[s] ≈ eμαH − 1 −→ 0 (35)

This result is consistent with the fact that for extremely small
λT , the frames include only one packet of length (N + H)

and noting α → 1, we expect E[sk] → ( N+H
R )k with neg-

ligible variations. Moreover, the inter-arrival time between
packets tends to the inter-arrival time between the input sym-
bols and follows an exponential distribution, which is simply
verified by E[τ ] = T

1−e−λT ≈ 1
λ

in (7). Similarly, (7) yields

C2[τ ] = E[τ ]2]
E[τ ]]2 − 1 = e−λT ≈ 1. Substituting the aforemen-

tioned approximations along with the approximation E[f] =
T
2 (1 + e−λT ) ≈ T for μ → 0, we obtain the following simpli-
fied expression for E[d]:

E[d] ≈ E[s]

[
λE[s]

1 − λE[s]

e−λT

2
+ 1

]
+ T/2

≈ (N + H)e−μ

RαH

[
(N + H)e−μ

2(RαH − λ(N + H)e−μ)
+ 1

]
+ T

(36)

In this case, E[d] is also a convex function of μ = λT by simi-
lar argument. These approximations can be used as an accurate
estimate of expected value of end-to-end delay for two extreme
cases. It also verifies the convexity of E[d] with respect to T
in general as confirmed by simulations results in section V.
The accuracy of these approximations for extreme cases of
extremely large and small T is shown in Fig. 5.

The approximation in (36) is based on the assumption that the
denominator remains positive for arbitrary low interval. This
condition holds for R large enough that satisfies stability con-
dition R > (N + H)λ as stated in section III-E. However, for
R < (N + H)λ, we are not able to make λT arbitrary small and
E[d] approaches infinity when ρ → 1−. In this case E[d] has a
cup shape as depicted in Figs. 7 and 8.

Due to the convexity of E[d] with respect to T , there exists
a global minimum corresponding to an optimal packetization
interval length with minimum end-to-end latency. We note that
the convexity is not necessary and the weaker condition of
quasi-convexity is sufficient to ensure uniqueness of the global
minimum, which in this case can be found using numerical
methods (e.g. gradient descent algorithm).

B. Energy Efficiency

In the above formulations, the optimization is aimed at min-
imizing the expected delay of symbols. However, one may
be interested in maximizing other performance metrics under
certain average delay constraints (i.e. E[d] ≤ D0). Since the
derived closed-form expression for end-to-end latency is con-
vex with respect to T , optimizing other parameters can be
recast as a convex optimization problem given that the objective
function is convex with respect to T .

An important parameter that recently regained attention is
energy efficiency due to its crucial role in the network main-
tenance cost and nodes operational lifetime [41]. We consider
a scenario that one is interested in maximizing energy effi-
ciency by choosing appropriate packetization time, when a
certain expected average delay is tolerable. In this work, we
follow the popular definition of energy efficiency as the ratio of
throughput to transmit power which is equivalent to the num-
ber of bits transmitted per unit energy in bit/Joule [41]–[43].
In order to cast this objective as a standard convex problem,
we formulate it as the equivalent problem of minimizing the
energy consumption Rating (ECR) defined as expected energy
used for one information bit transmission [44]. In the pro-
posed model, r(kN + H) bits are sent over the channel for
kN information bits, where the number of symbols in packet,
k and the number of re-transmissions, r are random vari-
ables. Considering channel rate R and transmit power Pt , and
using the ergodicity of the queue under stability conditions,
the ECR is simply E[ r(kN+H)

R Pt kN ]. Here, k is a T -dependent ran-
dom variable with Poisson-like distribution excluding zeros:
P(k = k) = 1

1−e−λT e−λT (λT )k/k! for k = 1, 2, . . . . Likewise,

r is Geometrically distributed with success parameter αH+kN

and hence depends on T through k. To achieve maximum
energy efficiency, we desire to minimize ECR(T ). Let us state
the following lemma.

Lemma 4.1: If k is a Poisson r.v. after zero deletion (i.e.
P(k = k) = 1

1−e−μ e−μμk/k!), then we have

Ek

[
1

kξk

]
= E(μ/ξ) − log(μ/ξ) − γ

eμ − 1
(37)

where log(.) is the natural logarithm, γ is the Euler constant
and E(.) is the exponential integral defined in Cauchy principal
value form as follows:

E(x) =
∫ x

−∞
et

t
dt (38)

Proof: See Appendix. �
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Now we proceed with evaluating EC F in terms of T as
follows:

ECR(T )

R Pt
= Ek

[
Er

[
r(kN + H)

kN

]]

= Ek

[
α−(kN+H).

kN + H

kN

]

= 1

αH
Ek

[
α−kN

]
+ H

NαH
Ek

[
α−kN

k

]
(a)= e−μ

αH (1 − e−μ)
(eμα−N − 1) + H

NαH
Ek

[
α−kN

k

]
(b)= e−μ

αH (1 − e−μ)
(eμα−N − 1)

+ H

NαH (eμ − 1)

(
E(μα−N ) − log(μα−N )

)

= eμα−N − 1 + η
(
E(μα−N ) − log(μα−N ) − γ

)
αH (eμ − 1)

(39)

where (a) and (b) are respectively due to lemmas (A.2) and
(4.1). If no header bits are used in the system η = H/N = 0,
then (39) simplifies to

ECR(T ) = eμα−N − 1

eμ − 1
R Pt (40)

The average energy required per unit bit transmission in (39)
provides an explicit relation between the packetization interval
and the energy efficiency. This relation is depicted for a typical
system parameter set in Fig. 11. To achieve maximal energy
efficiency under average delay constraint, the formal problem
formulations becomes:⎧⎨

⎩
T ∗ = arg min

T
{ECR(T )}

s.t. E[d(T )] < D0

�⇒
⎧⎨
⎩T ∗ = arg min{ eμα−N −1+η

(
Ei (μα−N )−log(μα−N )−γ

)
αH (eμ−1)

}
s.t. (E[s])2(1−e−μ)

T −E[s](1−e−μ)
.C2[s]+C2[τ ]

2 + E[s] + T/2 < D0

(41)

which can be readily solved using optimization packages such
as CVX [40]. Since the optimization parameter is only packeti-
zation time T , a short-cut solution is to check K.K.T conditions,
namely choosing the best point among three points including
the global minimum of ECR(T ) and two solutions for E[d] =
D0. If the delay constraint is too loose, the global minimum of
ECR(T ) lays in the valid range of E[d] < D0 and the maximal
energy efficiency is achieved. Otherwise, one of the extreme
corner points that are obtained by solving the constraint equa-
tion (E[d] = D0) defines the optimal feasible energy efficient
point. Both scenarios are depicted in Fig. 11 within section V.

V. SIMULATION RESULTS

In this section, simulation results are provided to confirm the
accuracy of the derived delay optimal packetization criterion.
For each graph, we performed Monte-Carlo simulation for at

Fig. 6. Coefficient of variation of service time C[s] = σ [s]/E[s]: comparison
between simulations and analysis (N = 16, H = 40, λ = 10).

least 100, 000 packets and used the sample average in stationary
states as surrogates for the expected values using the ergodicity
of the queuing system. The simulation parameters are arbitrar-
ily set to λ = 10, N = 16, H = 40 unless otherwise specified.
Fig. 6 presents the derived coefficient of variation for service
time C[s] = σs/E[s]. A perfect match between the analytically
derived C[s] with the empirical results where mean and vari-
ance are obtained by time averaging, verifies the accuracy of
equations (14), (15) and (53). It is seen that C[s] increases as
packetization time T moves away from zero. This variation
is due to the fact that for T → 0, the packet length tends to
include only one symbol and presents a fixed length of N + H .
Hence, the service time which is proportional to the packet
length presents low variations. For moderate T values μ ≈ 1,
the packet length presents more unpredictability. Furthermore,
when T grows to infinity, due to the accumulation of Poisson
arrivals over long interval, the number of symbols tends to
E[k]T = λT due to the Law of large numbers. Consequently
the packet lengths approach λT N + H and present low vari-
ations. Therefore, coefficient of variation approaches zero for
error free channels, PER = 0. However, for an erroneous chan-
nel, larger packet lengths experience higher packet drop rates.
In this case, service time encounters large variations due to vari-
ation in the number of packet re-transmissions. The peak of this
graph for error free channels is corresponding to a packetization
time that results in the most unpredictable service time.

Fig. 7 presents the impact of packetization interval length (T )
on various delay sources. Solid lines in this figure represent
analytically derived delays, while dashed lines with markers
represent the empirical values (sample means) obtained by
Monte-Carlo simulations. The packet formation delay, which
is shown with blue curve is proportionally related to T as
was intuitively expected and is discussed in section III-C. It
is noticeable that the expected waiting time E[w] is a con-
vex function of T , and so is the average end-to-end delay
E[d]. Convexity of delay curves with respect to T guarantees
the uniqueness of the optimum packetization interval length
for a given set of system parameters. These results suggest
that by choosing an appropriate packetization interval, we can
minimize the average end-to-end delay.

Fig. 8 demonstrates the behavior of the expected average
delay, E[d] derived in (32) with varying packetization inter-
val T for different channel qualities in terms of BER. It is



2416 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 3, MARCH 2016

Fig. 7. Various delay terms vs packetization interval (N = 16, H = 30, λ =
10, β = 10−3, R = 300, ).

Fig. 8. Expected delay E[d] vs packetization interval λT for different channel
error probabilities (N = 16, H = 30, λ = 10).

shown that for small T , the high overhead cost may cause the
average input rate (in terms of bit per second) exceed the ser-
vice rate, hence the queue becomes unstable. The service rate
apparently is lower for higher bit error probability that unsta-
bilizes the queue for smaller input rates. On the other hand,
for error-free channels, when T grows to infinity, the packet
inter-arrival times tend to be less than service time and there-
fore the dominant delay term is packet formation delay in
(20). Hence, the expected delay grows linearly with packeti-
zation interval length. For noisy channels with non-zero PER,
longer packetization intervals produce a larger average packet
lengths. Consequently, PER grows exponentially with T and
imposes larger service time, which in turn imposes longer wait-
ing time on the queue that ultimately makes the queue unstable.
Therefore, the growth of end-to-end delay with T is more cru-
cial for higher error probabilities. This shows the importance
of the given analysis to find an optimal packetization interval,
which is not only a function of input traffic properties, but also
depends on the underlying channel quality. Therefore, ignoring
physical layer parameters such as the utilized channel error-
rate in the packet formation at higher layers of communications
protocol might cause the whole transmission system to fail.

Fig. 9. Expected delay E[d] vs Channel SNR for uncoded and coded sys-
tem. In both CS1 and CS2, a RSC convolutional encoder with constraint
length 7 ans feedforward and feedback polynomials of 171 hex and 133 hex is
used. In CS1, the coding rate for data and header is RD = RH = 1/2, while
in CS2, RD = RH = 3/4 and in CS3, RD = 3/4 and RH = 1/2. Various
coding rates are obtained using different puncturing patterns. The decod-
ing scheme employs Viterbi algorithm. Other parameters are λ = 10, T =
1.5, N = 8, H = 40, R = 400 bit/sec.

In order to investigate the effect of channel error proba-
bility in the proposed method, we evaluated the end-to-end
delay for both uncoded and coded systems in Fig. 9 using
the generalizations provided in section II. In this system, we
use different coding rates for payload and header part of the
produced packets similar to practical communication protocols
[32]. An immediate observation is that as the channel SNR
improves, the end-to-end delay decreases, which is apparently
due to a fewer number of re-transmissions. A more interesting
observation is that an encoded system remains operational in a
lower SNR range since the packet error rate (and consequent
packet re-transmissions) remain low and hence the queue does
not become unstable. The smaller the coding rate RD, RH → 0,
the longer header size is affordable before the queue becomes
unstable. However, in high SNR regime, the uncoded system
is desirable since it has shorter packet lengths for the same
number of input symbols and consequently requires shorter
service time. The coding scheme CS1 with code rates RH =
1/2, RD = 1/2 which uses more parity bits demonstrates a
slightly lover minimum delay in high SNR regime compared
to CS2. Delay floor effect is shown with slotted line in Fig. 9.

Fig. 10 presents the optimum packetization interval for dif-
ferent header sizes H for both uncoded and coded systems.
Obviously, a larger number of header bits demands higher pack-
etization interval to compensate the waiting time caused by low
header efficiency and intends to control the effective header bits
per symbol H

μ
. For higher channel error, in the same header

size, the optimum packetization interval is smaller to avoid a
large number of re-transmissions. Another observation is that
for a coded system with more parity bits and a better error
rate (CS2 in Fig. 10), the optimal packetization interval is set
larger, since the number of retransmissions that may arise due
to longer packet sizes are compensated by a better error cor-
rection property. Therefore, the system appropriately chooses
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Fig. 10. Optimal packetization interval vs header length H for uncoded and
coded systems with N = 8, λ = 10, R = 400 bit/sec. In coded scheme 1 (CS1),
an encoder with rate RD = RH = 1/2 and βD = βH = β(Uncoded)/10 is
used. In coded scheme 2 (CS2), two encoders with rates RD = 1/2 and RH =
1/3 and corresponding bit error probability of βD = β/10 and βH = β/100
are used for payload data and header parts.

Fig. 11. Energy Per Unit Bit vs Packetization Time (N = 8, H = 40, λ = 1).

an optimal packetization interval that minimizes the expected
delay for both uncoded and coded systems. Thirdly, the sys-
tem with higher error rate reaches (highlighted in red color in
Fig. 10) the instability point with shorter header lengths due to
more frequent packet retransmissions as expected.

In order to analyze the impact of packetization interval on
Energy efficiency, the expected energy consumption per unit
information bit (ECR) is depicted in Fig. 11. Due to the con-
vexity of ECR(T) with respect to T , the most energy-efficient
packetization interval T ∗ can be found analytically or numeri-
cally evaluated using methods such as gradient descent. Energy
efficiency is impacted by T through two phenomena of header
efficiency and number of re-transmissions. By increasing the
packetization interval, the ratio of header bits to packet length
(E[ H

H+kN ]) decreases, which in turn translates to a lower energy
consumption per information bit. This reduction in average
energy per bit continues until it is compensated by the extra
average energy consumption required for re-transmission of
longer packets, since the longer packets are more likely to be
discarded. The global minimum corresponds to the balance
between these two contradictory effects. It is observed that for

error-free channels, the average energy consumption is decreas-
ing function of T , since no re-transmission occurs. If one is
interested in energy efficiency under constrained average delay
(E[d] < D0), the global minimum may fall out of the valid
range of T and hence one of the corner points (solutions of
E[d] = D0) provides the most energy efficient solution. For
instance, if the average delay constraint implies T ∈ [5/λ ∼
10/λ] as depicted by dashed black color in this figure, the global
minimum of energy curve for β = 0.01 falls in the valid region
and hence it is achievable. However, the packetization inter-
val that minimizes the expected energy consumption falls out
of the valid range of packetization interval for β = 0.02 and
β = 0.002. Therefore, in such cases we need to choose one of
the left and right corner points namely T = 5/λ and T = 10/λ,
which are imposed by delay constraint, as highlighted by circle
in this figure.

VI. CONCLUDING REMARKS

In this paper, the impact of packetization interval length
on the end-to-end latency is investigated to provide an opti-
mal policy to encapsulate Poisson arrival symbols into transmit
packets. Closed-form expressions are derived for both expected
end-to-end delay and energy efficiency through queuing system
analysis. It was noticed that the Poisson arrival symbols yield
three distributions for packet inter-arrivals including: exponen-
tial, Geometric, and Deterministic as T departs from zero to
infinity.

It was also shown that a small packetization interval reduces
header efficiency, which may cause the packet rates to exceed
the service rate, unstabilize the queue and impose extremely
large delay. On the other hand, a larger packetization interval
increases the expected delay due to longer wait to form a packet
as well as delay arose from more frequent re-transmissions.
This suggests that packet formation policy design should incor-
porate underlying physical layer parameters such as channel
rate and bit error probability in addition to network-based traffic
statistics. The proposed policy not only optimizes the perfor-
mance metrics such as delay and energy efficiency, but also
avoids the transmission system crash due to queue instability.
This delay-optimal packetization policy for a single hop com-
munication is essential in sensor network entry points, where
measurement symbols are bundled into packets. This funda-
mental study can be further extended to more complicated
system setups in Ad-hoc networks and can also be integrated
with delay-minimal scheduling policies to reduce the overall
system delivery time.

APPENDIX

Proof of proposition 3.1: In order to prove the proposition,
we first state the following lemmas:

Lemma A.1: If k is a Poisson r.v. with mean μ, then
Ek[ kn

ζk ] = e−μ(1−1/ζ )
∑n

i=1 S2(n, i)(μ/ζ )i for n = 1, 2, 3 . . .,
where S2(n, i) is the Stirling number of the second kind that
counts the number of ways to partition a set of n elements into
i nonempty subsets [45].
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Proof: First, we notice that:

Ek∼Poiss(μ)

[
kn

ζ k

]
=

∞∑
k=0

kn

ζ k
e−μ μk

k! = e−μ(1−1/ζ )

×
∞∑

k=1

kne−μ/ζ (μ/ζ )k

k! = e−μ(1−1/ζ )
Ek∼Poiss(μ/ζ )[kn].

(42)

where k ∼ Poiss(μ) is to reflect that k is a Poisson r.v. with
mean(μ). It was shown in [46] that kn can be represented in the
form of falling factorials as

kn =
n∑

i=0

S2(n, i)k(i), (43)

where k(i) = k(k − 1) . . . (k − n + 1) is the falling factorial.
Combining (42) and (43) results in

Ek∼Poiss(μ)

[
kn

ζ k

]
= e−μ(1−1/ζ )

n∑
i=0

S2(n, i)Ek∼Poiss(μ/ζ )[k(i)].

(44)

Ek[k(i)] can be easily found by factorial moment generation
function for a Poisson distribution as follows:

Ek(μ/ζ )[k(i)] = di

dt i
Ek(μ/ζ )[t

k]

∣∣∣∣
t=0

= di

dt i
eμ/ζ(t−1)

∣∣∣∣
t=0

= μi eμ/ζ(t−1)
∣∣∣
t=0

= (μ/ζ )i (45)

Substituting (45) in (44) completes the proof. �
Corollary: As special cases for n = 1, 2, we have S2(n, 0) =

0 and S2(1, 1) = S2(2, 1) = S2(2, 2) = 1. Therefore:

Ek

[
k
ζ k

]
= μ

ζ
e−μ(1−1/ζ ), (46)

Ek

[
k2

ζ k

]
= μ

ζ

(
1 + μ

ζ

)
e−μ(1−1/ζ ). (47)

Lemma A.2: If k is a Poisson r.v. with parameter μ and
x(k) is defined as x(k) � (h(k))m

ζ k for m = 1, 2, 3, . . ., then

Ek[x(k)] = e−μ(eμ/ζ − 1).
The proof follows from definition of expected value. We

notice that (h(k))m = h(k). Thus,

x(k) =
{

1
ζk k �= 0

0 k = 0
�⇒ Ek[x(k)] =

∞∑
k=0

x(k)pk(k)

=
∞∑

k=0

1

ζ k
pk(k) − pk(k = 0)

1

ζ 0

= Ek

[
1

ζ k

]
− e−μ = e−μ(eμ/ζ − 1). (48)

Lemma A.3: If k is a Poisson r.v. with parameter μ and x(k)

is defined as x(k) � (h(k))m kn

ζk , where m, n ∈ {1, 2, 3, . . .}, then

Ek[x(k)] = e−μ(1−1/ζ )
∑n

i=1

(n
i

)
(μ/ζ )i .

The proof immediately follows from lemma A.1 and noting
the fact that x(k) = h(k)mkn

ζk = kn

ζk for any positive integer m.

Now, we proceed with deriving the moments of the aux-
iliary service time s̃, then calculate those of s. We note that
the re-transmission parameter, r is Geometrically distributed
with success parameter (1 − β)l = αH+k N which dependent on
the packet length. Hence, its first and second order moments

are Er[r] = α−(H+kN ) and Er[r2] = 2−αH+kN

α2(H+kN ) , which are func-
tions of k. Therefore, using Lemmas A.1, A.2 and A.3, the
moments of s̃ can be calculated as

E[s̃] = Ek [Er[s̃]] = Ek

[
h(k)H + k N

R
Er[r]

]

= Ek

[
h(k)H + kN

RαH+kN

]

= H

RαH
Ek

[
h(k)

(αN )k

]
+ N

RαH
Ek

[
k

(αN )k

]

= H

RαH

(
e−μ(eμα−N − 1)

)
+ μN

RαH αN
e−μ(1−α−N ) ]

= Ne−μ

RαH

[
(η + μα−N )eμα−N − η

]
, (49)

where η = H/N denotes the ratio of header size to symbol size.
Similarly we have

E[s̃2] = Ek[Er(s̃2)] = Ek

[
(h(k)H + kN )2

R2
E[r2]

]

= Ek

[
(h(k)H + kN )2(2 − αH+kN )

R2α2(H+kN )

]

= 2H2

R2α2H
Ek

[
h2(k)

(α2N )k

]
+ 2N 2

R2α2H
Ek

[
k2

(α2N )k

]

+ 4N H

R2α2H
Ek

[
kh(k)

(α2N )k

]
− H2

R2αH
Ek

[
h2(k)

(αN )k

]

− N 2

R2αH
Ek

[
k2

(αN )k

]
− 2N H

R2αH
Ek

[
kh(k)

(αN )k

]
(50)

After substituting the relevant expected values noting
Lemma A.1 and A.2 and some simple manipulations, we
obtain:

E[s̃2] = 2H2

R2α2H

[
e−μ(eμα2N − 1)

]

+ 2N 2

R2α2H

[
e−μ(1−α2N )(2μα2N + μ2α2N )

]

+ 4N H

R2α2H

[
e−μ(1−α2N )(μα2N )

]
− H2

R2αH

[
e−μ(eμαN − 1)

]

− N 2

R2αH

[
e−μ(1−αN )(2μαN + μ2α2N )

]
− 2N H

R2αH

[
e−μ(1−αN )(μαN )

]
(51)

E[s̃2] = N 2e−μ

R2αH

[(
2μα−2N +2λ2T 2α−4N +4ημα−2N +2η2

)
.α−H eμα−2N −

(
μα−N + λ2T 2α−2N + 2ημα−N + η2

)
. eμα−N −

(
2η2α−H − η2

)]
. (52)
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Since no packet is generated for zero symbol accumulation dur-
ing an interval, we exclude the packets with zero symbols and
length H according to (8) to obtain the moments for service
time as follows:

E[s̃n] = E[s̃n|k = 0]P(k = 0) + E[s̃n|k �= 0]P(k �= 0)

= E[sn]P(k �= 0) �⇒ E[sn] = E[s̃n]

1 − e−μ
. (53)

Substituting (49) and (50) in (53) completes the proof.
Proof of lemma 4.1: In order to proof (37), we define

fξ (μ) = Ek[ 1
kξk ]. Noting P(k = k) = 1

1−e−μ e−μμk/k! we
have

fξ (μ) = E[
1

kξk ] =
∞∑

k=1

1

kξ k

e−μμk

(1 − e−μ)k!

= eμ/ξ−μ

(1 − e−μ)

∞∑
k=1

(μ/ξ)ke−μ/eta

k.k! (54)

For notation convenience, we define gξ (x) with change of
variables as follows:

gξ (x) = (1 − e−μ)eμ−μ/ξ fξ (μ)|x=μ/ξ =
∞∑

k=1

xke−x

k.k! (55)

Now, we take derivative of (58) with respect to x to obtain the
following ordinary differential equation (ODE):

dgξ (x)

dx
=

∞∑
k=1

1

k.k!
d

dx
(xke−x ) =

∞∑
k=1

1

k.k! (kxk−1 − xke−x )

= 1

x

∞∑
k=1

1

k! xke−x − gξ (x) = 1 − e−x

x
− gξ (x)

⇐⇒dgξ (x)

dx
+ gξ (x) = 1 − e−x

x
(56)

The ODE in (56) can be solved as follows:

dgξ (x)

dx
+ gξ (x) = 1 − e−x

x

⇐⇒ dgξ (x)

dx
ex + gξ (x)ex = ex − 1

x

⇐⇒ d

dx
(gξ (x)ex ) = ex − 1

x

⇐⇒ gξ (x)ex =
∫ x

∞
t−1et dt −

∫ x

∞
t−1dt = E(x) − log(x) + c

⇐⇒ gξ (x) = e−x (E(x) − log(x) + c) (57)

where log(.) is the natural logarithm and E(x) = ∫ x
−∞

et

t dt is
called the exponential integral. Noting limx→0 gξ (x) = 0, the
constant c is determined to be negative of Euler constant, c =
−γ . The value of E(x) can be readily evaluated using available
tables, recursive algorithms and Taylor series [47]. Now, using
we substitute (57) in (58) to obtain the result:

fξ (μ) = eμ/ξ−μ

(1 − e−μ)
gξ (x)|μ=xξ = E(μ/η) − log(μ/η) − γ

eμ − 1
(58)
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