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Abstract— The problem of identifying interacting genes that 

jointly are associated with a phenotype is considered. When the 

number of features are extremely large compared to the number 

of samples, there may be several subsets of features that provide 

acceptable levels of predictability. This is particularly true in 

cancer genomics, where we are interested in finding functionally 

related gene sets likely to jointly drive cancer phenotypes.  

In this paper, a novel game theoretic solution is proposed by 

modeling genes as players of a Coalition Game. This method 

discovers and develops informative gene subnetworks by 

integrating gene expression profiling of cancer tissues with 

protein-protein interaction (PPI) networks. These subnetworks 

are gradually developed by selective addition of candidate genes 

that present maximal Shapely values in coalition with 

subnetworks of genes. We applied the proposed algorithm to an 

ovarian cancer dataset (N = 201), in order to identify optimal 

subnetworks that can predict cancer progression risk in 

response to platinum-based therapy. We show improved 

predictive power of the proposed method when compared to 

state-of-the-art feature selection methods, with the added 

advantage of identifying potentially functional gene 

subnetworks that may provide insights into the mechanisms 

underlying cancer progression.  

I. INTRODUCTION 

A critical problem in cancer research involves the 
identification of functionally connected sets of genes that 
jointly drive cancer development, progression and therapy 
response. Large-scale cancer profiling studies have enabled 
the measurement of thousands of genes across samples, but 
only a few tens of genes at most are likely to be relevant to the 
underlying biological process.  

Dimensionality reduction using discriminative component 
analysis methods such as CCA, LDA and IDA are developed 
to project data into new subspaces, where a few components 
bear the most discriminative information about data, hence 
simplifying data storage, prediction and interpretation [1]. 
Although very efficient in dimensionality reduction, these 
methods are not ideally suited for the identification of genes 
driving cancer progression, since the predictors are provided 
in the transformed subspace. 

Explicit feature selection methods are divided to wrapper 
methods and filtering methods. In filtering methods, the 
predictors are chosen based on their strong connection to the 
labels with less connection among the features using various 
geometric or information theoretic measures, whereas in 
wrapper methods the features are chosen based on their impact 
to the classifier. Wrapper methods require exhaustive search, 
thereby are computationally expensive. The filter methods 
with geometric distance measures are very fast but not capable 

of capturing non-linear relations. On the other hand, 
information theoretic filtering methods are very powerful but 
become computationally expensive. Further, they require 
large number of samples in order to obtain reliable empirical 
information-theoretic measures [2]. In cancer genomics, we 
are interested in methods that incorporate prior biological 
knowledge captured as protein-protein interaction (PPI) 
networks, gene ontology or biological pathway network 
databases in the feature-selection process, in order to identify 
functionally related sets of genes that jointly discriminate 
between phenotypes [3], [4]. PPI networks capture 
relationships amongst proteins such as joint-membership in 
protein complexes and regulatory pathways and have 
therefore been used in the analysis of gene expression profiles, 
which are commonly regarded as surrogates of protein level 
expression [4], [5].  

Game theory has the ability to model complex interactions 
amongst individual players and has therefore been recently 
used in the analysis of gene regulatory networks. For instance 
in [6], the authors have used a non-cooperative stochastic 
game to model genes involved in the regulation of mammalian 
cell cycle.  

In this work, we develop a Game theoretic solution based 
on coalition games using the concept of Shapely value in order 
to discover subnetworks containing informative genes jointly 
associated with clinical outcomes by traversing the PPI 
network. This algorithm reports a set of compact subnetworks 
that collectively modulate specific biological processes 
associated with the outcome, thus facilitating the development 
of biomarkers using core representative nodes within the 
identified subnetworks, as opposed to measuring all the genes 
individually. 

II. COALITION GAMES REVIEW  

In this section, we review the coalition games and their 
application in choosing subset of features considering their 
synergic predictive power. Coalition game is a class of games, 
where the players cooperate with one another by forming 
coalitions [7]. Coalition games have been recently utilized in 
feature selection problems to account for the relevance among 
potentially effective combinations of the features as well as 
providing a quantitative measure of the impact of each feature 
on the overall prediction [8] [9]. In this work, we propose a 
novel Network Based Coalition Game (NBCG) algorithm, 
where the game players are gene subnetworks extracted from 
the networks. In this algorithm, the game players are 
subnetworks which are not fixed, but rather developing 
identities over the game iterations by picking up new genes 
from the PPI network. 
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Let 𝑁𝐿 be the number of players, 𝑃 = {𝑃1 , … , 𝑃𝑁} be the 
set of players and 𝑆 denote a coalition set, 𝑆 ⊆ 𝑃. The total 
payoff that can be gained by the members of coalition 𝑆 is 
defined by characteristic function 𝑣(𝑆). The game solutions 
are determined with possible scenarios that the players can 
form coalitions and how the total payoff of a coalition is 
divided amongst the coalition members.  

Different possible coalitions of genes and pathways are 
examined to recognize the optimal classification features. 
Payoff of each coalition S, v(S), measures the contribution for 
a coalition to the performance of the classifier (e.g. success 
rate in supervised learning). If feature 𝑖 joins a coalition 𝑆, it 
may improve the classification capability of this coalition. 
This is called marginal importance and is defined as; 

𝛥𝑖(𝑆) =  𝑣(𝑆 ∪ {𝑖}) −  𝑣(𝑆).            (1)  

This marginal importance of a player does not reflect a fair 
share of the player from the characteristic function, since it 
depends on the order of the players in forming the coalition. 
Shapely value assigns a fair quantity for each player based on 
the average contribution of the player among all possible 
coalitions with all possible permutations [10]. Formally, the 

Shapley value of player i ∈ P denoted by γ
𝑖
(𝑣) is defined as 

the expected marginal importance of player i to the set of 
players who precede this player. 

γ
𝑖
(𝑣) =  

1

𝑁𝐿!
∑ 𝛥𝑖(𝑆𝑖(𝜋))

𝜋∈Π

,          (2) 

where Π is the set of all NL! permutations of P and 𝑆𝑖(𝜋) is 
the set of players (features) preceding player i in subset S with 
permutation π. Since the order of features inside a coalition 
does not change the coalition power, the calculations in (2), 
can be further simplified by excluding the permutation inside 
coalitions in the average, resulting in the following equation: 

γ
𝑖
(𝑃, 𝑣) =  

1

𝑁𝐿!
∑ 𝛥𝑖(𝑆)|𝑆|𝑖(𝑁𝐿 − |𝑆| − 1)!,

𝑆⊆𝑁𝐿\𝑖

    (3) 

where 𝑆 ⊆ 𝑁𝐿\𝑖 presents the coalitions to which player i does 
not belong. |𝑆|𝑖  and |𝑆|𝑖(𝑁𝐿 − |𝑆| − 1)  correspond to 
permutations of the preceding players and the subsequent 
players, respectively.  

In applications with a large number of players, computation 
of Shapley value for all possible feature coalitions may be 
computationally intensive. Therefore, we utilize the multi-
perturbation Shapley value (MSA) measurement, which is 
determined using an unbiased estimator based on Shapley 
value by using sampled permutations of players that form 
coalitions up to size 𝑁𝐿

′. The idea behind this method is that 

coalitions of size 𝑁𝐿
′ < 𝑁𝐿  are capable of capturing the 

synergic power of players and larger coalitions only present 
additive power [8]. Therefore, we use  

γ
𝑖
′(𝑣) =  

1

|Π𝑁𝐿
′ |

∑ 𝛥𝑖(𝑆𝑖(𝜋))

𝜋∈Π
𝑁𝐿

′

,          (4) 

where Π𝑁𝐿
′  denotes the sampled permutation on sub-groups of 

players of size 𝑁𝐿
′ . In this work, we use the approximate 

method of MSA with 𝑁𝐿
′ = 4.  

III. PROPOSED ALGORITHM 

In order to develop our algorithm, we note that the genes 
and their corresponding protein products directly or indirectly 
interact with one another as part of underlying biological 
processes. Protein-Protein Interaction (PPI) networks are 
developed to translate these complex biological processes into 
an undirected Boolean graph, where the nodes are genes (or 
their corresponding product proteins) and the edges represent 
biological interactions between the connected nodes. We use 
the human PPI network [11] and represent it as a 𝐺 × 𝐺 binary 
matrix A, where G =12126 is the number of genes. 

 

 

Fig. 1: An example of developing 5 modulated subnetworks over 
a PPI network. The initialization seed genes are marked with green 
color. The paths may develop chain, star and loop configurations. 

A. Initializations 

To select the subset of enriched genes with a phenotype, 
we start with initial set of 𝑁𝐿 − 1  genes, from which the 
subnetworks emerge. The seed genes may be chosen 
randomly or using prior biological knowledge. For instance, 
one may choose the genes that are most frequently mutated in 
the cancer being studied, or genes whose expression levels are 
highly correlated with the phenotype. While these 
initializations may provide good initial gene sets, they perhaps 
prevent the discovery of subnetworks that are formed by genes 
that collectively but not individually impact the desired 
phenotype. The other option is to be agnostic of the phenotype 
but rather choose the genes from hot-spot points in the PPI 
network using degree or in betweenness measures. This 
initialization has the advantage of more flexibility and shorter 
access paths from seed genes to the informative subnetworks. 
Therefore, we use this method and choose the seed genes 
randomly among top 100 hot-spot genes in the PPI network. 

B. Coalition Evaluation 

The proposed algorithm uses classification accuracy as 
characteristic function to evaluate the impact of a coalition of 
genes on predicting therapy response, as detailed in Section 
IV. To evaluate the predictive power of subsets of features, we 
train a classifier on a training dataset and evaluate it on the 
remaining test dataset, using 4-fold cross validation. The 
prediction success rate defines the payoff of the test gene set, 
from which the marginal importance and Shapley value for 
each player is obtained.  
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C. Subnetwork Development Based on Shapley Value 

The game starts with 𝑁𝐿 seed genes as players, as depicted 
in Fig. 1. Then, a path is emerged from each gene sequentially. 
For each seed gene 𝑖 ∈ {1,2, … , 𝑁𝐿}, we form a set of directly 
connected neighbors in the PPI network  Ω𝑖 = {𝑘|𝐴(𝑖, 𝑘) =
1}. Each node in  Ω𝑖is a candidate to evolve a path from that 
corresponding seed gene. Then, we evaluate the Shapley value 
for each candidate gene  𝑗 ∈  Ω𝑖  , as the expected marginal 
importance of the gene j when forming coalitions with all of 
the other players. The gene k with the maximum Shapley 

value argmax
𝑘∈Ω𝑖

𝛾𝑘(𝑣)  is chosen to join the subnetwork i. Once 

a subnetwork is evolved from a seed gene, it takes over the 
role of player i in the game replacing the corresponding seed 
gene. Therefore, the number of players does not increase with 
game evolution. We note that the computational complexity 
of the algorithm is exponentially proportional to the number 
of players, hence the proposed method of representing players 
with 𝑁𝐿  subnetworks rather than G individual genes 
significantly decrease the computational cost, since we have  
(2𝑁𝐿 ≪ 2𝐺). In fact, the coalition-based game solution using 
genes as players is computationally infeasible. The idea 
behind this method is that we do not exclude genes from an 
already formed subnetwork, since it breaks down the 
subnetwork which is contradictory to the goal of finding 
informative subnetworks.   

We repeat this procedure for the rest of the seed genes until 
they are replaced by two-node subnetworks. Then, this 
process is continued using the subnetworks as new game 
players. At each iteration, each subnetwork collects a single 
gene from its neighborhood set that presents a maximum 
Shapley value. The subnetworks are allowed to join one 
another to develop star configurations. We repeated the 
procedure until the stop criteria are met for all developed 
subnetworks. If the Shapley value for all neighbor genes are 
negative for a path, we stop extending the subnetwork and set 
link stop flag LS(i)=1 to avoid collecting uninformative genes. 
The subnetwork evolution is also stopped if it crosses itself by 
choosing a gene which is already part of the subnetwork. We 
also terminate each subnetwork if the number of its nodes 𝐿𝑖 
reaches a predefined parameter 𝐿𝑚𝑎𝑥 . The algorithm stops, 
when all subnetworks are frozen or the collective prediction 
power of all subnetwork gene members denoted by Acc 
reaches a predefined accuracy level, 𝐴𝑐𝑐max. This algorithm 
is summarized in pseudocode below.  

 

IV. RESULTS 

In this section, the proposed algorithm is utilized to find 
the gene subnetworks that significantly impact therapy 
response in ovarian cancer. The data is obtained from The 
Cancer Genome Atlas (TCGA) dataset [12] and includes 201 
cancer samples with their gene expression levels and clinical 
response. The clinical response data includes survival 
information (death or cancer progression) after platinum-
based chemotherapy. We first divide the samples into two 
cohorts of poor and good survival rates. The poor survival 
cohort includes samples with recursion or death events during 
the first 6 months of receiving platinum therapy, excluding 
patients who left the study (censored samples). Patients who 

survive at least 6 months without cancer progression are 
included in the good survival cohort. 

We run the proposed algorithm using the following 
parameters of the game set as: number of subnetworks 𝑁𝐿 =
5, maximum group size 𝑁𝐿

’ = 3, and maximum subnetwork 
length  𝐿𝑚𝑎𝑥 = 20 . The algorithm reports a collection of 
subnetworks that are highly associated with the survival 
outcomes. The proposed solution can be integrated with any 
classification method, where the prediction power of the 
classifier is used as the characteristic function of a coalition 
under test. In this work, we arbitrarily use the SVM 
classification with RBF kernel with 4-fold cross validation. 
However, the obtained results is not sensitive to the choice of 
classifier and the numerical results show negligible change 
when using other classifiers (such as Random Forest, Naive 
Bayes, Bayes Net, and KNN).  

We compare the results with the same number of genes 
obtained using two benchmark solution categories including 
optimal feature selection methods and random network 
traversal methods:  

A) In the first comparison setup, we apply state-of-the-
art feature selection methods including Correlation 
based subset evaluation (CFS), Chi-square test based 
subset evaluation (Chi-Square) and mutual-
information based subset evaluation method (Gain-
Ratio). Additionally, two representative wrapper 
methods including Best First Search (BFS) method 
with Naive-Bayes and ranker method with SVM 
classifier were also applied. These methods report the 
most informative genes that may or may not belong 
to connected subnetworks. We focus on feature 

 

Algorithms NBCG: Reports Informative Subnetworks  

Inputs: 𝑁𝐿, 𝐿𝑚𝑎𝑥, 𝐴𝑐𝑐𝑚𝑎𝑥, A 

Output: 𝑁𝐿 Subnetworks 𝑃𝑖 , Acc 

1) Randomly choose 𝑁𝐿 seed genes 𝑔𝑖 from top 100 hot-spot nodes in 

A 

2) For i=1 to 𝑁𝐿 

a) Set 𝑃𝑖  = {𝑔𝑖}, set LS(i)=0; 𝐿𝑖 =  1; end 

3) End 

4) Loop 

a) For i=1 to 𝑁𝐿 

i) Generate Left and Right Neighbor List Ω𝑖
𝐿 , Ω𝑖

𝑅 

ii) Incerement Number if iteration: L_i =L_i+1 

iii) Find best left neighbor : 𝑙𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑙∈Ω𝑖

𝛾𝑙(𝑣) 

iv) If  𝛾𝑙𝑜𝑝𝑡
(𝑣) ≥  0   

𝑃𝑖 ←  𝑙𝑜𝑝𝑡  ∪ 𝑃𝑖   

v) If  𝛾𝑙𝑜𝑝𝑡
(𝑣) < 0  or 𝐿𝑖 > 𝐿𝑚𝑎𝑥 

   Set 𝐿𝑆(𝑖)𝑖 ←  1 

vi) Calculate Acc=Acc(𝑃1 ∪ … ∪ 𝑃𝑁𝐿
)  

b) End For 

c) If  ∏ 𝐿𝑆(𝑖) > 0
𝑁𝐿
𝑖=1   𝑜𝑟 𝐴𝑐𝑐 ≥ 𝐴𝑐𝑐𝑚𝑎𝑥    

i) Report 𝑃𝑖 and Acc 

ii) Exit Loop 

5) End Loop 
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selection methods in our comparison since they also 
explicitly attempt to identify the most relevant subset 
of genes associated with the phenotype in contrast to 
other dimensionality reduction methods that do not 
result in explicit lists of relevant genes. 

B) As an alternative comparison setup, we compare the 
proposed method with a network-based traversal 
method, where the subnetworks are initiated from the 
same initial gene seeds as in our proposed method. 
Instead of using the Shapely value, genes from the 
connected subnetwork in proximity of the seed genes 
are selected using a random walk until it collects the 
same number of genes as the proposed method. This 
whole procedure is repeated 100 times and the set of 
gene-subnetworks which provides the best prediction 
accuracy is selected for comparison with the proposed 
methodology.  

In order to compare the relevance of the obtained gene sets 
across methods, in addition to the classification accuracy 
based on phenotype survival rates, we also compare the 
discriminative power of the gene sets in terms of survival 
probability. Therefore, patients are clustered using K-means 
clustering based on the gene expression data for the selected 
genes by the different methods. Then, we estimate the survival 
probability for each cluster using the standard method of 
Kaplan-Meier estimation followed by survival difference 
estimation using the log-rank test method that provides the 
probability of obtaining such a difference purely by chance (p-
value).  

The results of these comparisons are provided in Table. 1. 
For competitor methods, where the sorted list of genes are 
provided based on various geometric distance or information 
based measures, we choose the same number  of the top-genes 
that are reported by our method, which is 18. It is seen that the 
proposed method outperforms the other methods. The main 
cause is that the proposed coalition-based solution considers 
the collective power of gene sets based on Shapley value 
concept. This is in particular interesting, since the competitor 
methods are not restricted to choose the genes from connected 
subnetworks. The proposed solution provides more insightful 
and clinically relevant gene subnetworks. 

 

 
 

 

 

 

 

Fig. 2. (a) Sample subnetworks reported by the proposed algorithm. 

(b) Platinum-free survival, p-value= 4 × 10−5. 

 

The subnetworks identified by our proposed algorithm for 
𝑁𝐿 = 5  are depicted in Fig. 2a. Subnetworks 1,2, and 4 
correspond to i) vascular endothelial regulation, ii) cell cycle 
progression and apoptosis and iii) TGFb signaling pathways, 
respectively. These pathways belong to well-known 
hallmarks of cancer, thus suggesting that our proposed 
methodology is able to identify potentially functional 
pathways mediating therapy resistance.  The subnetwork 5 
joins subnetwork 4 at iteration 3 (dashed line) and subnetwork 
3 stops extending at iteration 3, since no new informative 
neighbor genes were available. 

Fig. 2b presents the survival curves for patients clustered 
into two groups using K-means clustering based on the 
expression level of the genes obtained from the proposed 
game-theoretic method (Fig 2a). The result demonstrates that 
the proposed solution can identify gene subnetworks with 
higher survival discriminatory power as compared to the 
estimates from the best feature selection method, which is 
CFS method for this case (Fig. 3a), and the Optimal Network-
based Random-walk solution (Fig. 3b).  

 

 

Table I. Comparison of genes selected using the proposed method 
and other state-of-the-art feature selection methods based on its 
prediction accuracy and survival outcome separation. The results 
are corresponding to the first 18 genes reported by each method.  

Method Log-rank test 
p-value 

Prediction 
Success Rate 

CFS 0.01814 0.6488     

Chi-Square 0.25505 0.6667     

Gain-Ratio 0.47773 0.5179    

Best First Search 0.07646 0.5714   

SVM: Ranker 0.09190  0.5714 

Optimal Random-Walk 0.08060 0.6190 

Proposed NBCG 0.00004 0.7262 

 

(b) 

(a) 
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Fig. 3: Survival probability obtained by Kaplan-Meier Estimate for 
the cancer samples clustered using the genes that are selected by (a) 
best classification method (CFS), p-value=0.018 and (b) optimal 
network based random walk method, p-value = 0.08. 

V. CONCLUSIONS 

A novel Coalition based algorithm is developed using PPI 
networks to identify gene subnetworks that predict therapy-
response in ovarian cancer. This method overcomes the 
benchmark feature selection methods and provides a 
collection of subnetworks that predict patient survival after 
platinum-based chemotherapy. The proposed method has the 
advantage of using PPI networks to identify functionally 
related gene sets that jointly discriminate patient outcomes. 
Additionally, this approach takes into account the collective 
power of subnetworks using the concept of Shapley value, as 
opposed to techniques that grow each subnetwork 
individually.  The resulting subnetworks identified by the 
method could allow for the identification of functionally 
related subnetworks that are associated with cancer 
phenotypes, thus enabling the discovery of novel biomarkers 
and therapeutic targets in cancer.  
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