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Abstract In this article, a new game theoretical method
is proposed to model packet forwarding in relay networks.
A simple case of relay network that consists of a source, a
relay and a destination node communicating on a common
channel is considered. A stationary Markovian game model
is utilized to optimize the system performance in terms of
throughput, delay and power consumption cost. Both coop-
erative and non-cooperative solutions are provided for this
model. Best strategy set taken by players as well as sys-
tem performance is studied for different system parameters.
Also, the proposed method is extended to model a more gen-
eral case of Ad-hoc networks considering different packet
error rates in case of collision occurrence that improves the
system performance further.

Simulation results show that performance of the non-
cooperative solution, in which players do not require to
know each other’s selected strategy, asymptotically ap-
proaches the cooperative system performance. Hence, the
proposed model with non-cooperative solution is an appro-
priate method to apply in practical Ad-hoc networks.
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1 Introduction

In Ad-hoc networks, when several transmitters randomly at-
tempt to access a finite number of resources, collision is un-
avoidable. For instance, simultaneous attempts to access a
multiple-access channel produce interference and degrade
the system performance in terms of achievable throughput.
Optimizing system throughput is still one of the challeng-
ing issues in wireless Ad-hoc networks. There are various
researches to evaluate system performance due to noise and
interference level in wireless systems [1, 2].

Moreover, each node in addition to transmitting its own
packets, is supposed to cooperate with other nodes to for-
ward their packets to the destination. This relaying opera-
tion, called cooperative diversity, increases system through-
put by providing spatial diversity benefits without using an
extra antenna array [3]. Although this might result in con-
suming the limited energy available at each node, but refus-
ing to forward other nodes’ packet decreases the network
throughput. Study of different relaying methods to achieve
high performance in terms of throughput and channel effi-
ciency is an important issue in Ad-hoc networks.

Game theory has been widely used to analyze wireless
Ad-hoc networks, due to selfish behavior of the nodes as
well as distributed nature of these systems [4–6]. Game the-
oretical approach is a proper method to model the packet
forwarding in Ad-hoc networks. It can be used to analyze
the trade off between nodes’ interest to avoid forwarding
others’ packets due to limited power versus providing re-
lay service in order to increase the system throughout [7–9].
Utilizing game theory maximizes the overall system perfor-
mance considering different desired goals such as maximum
throughput and minimum delay requirements as well as low
power consumption cost and implementation simplicity.
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Repeated game theory is considered to analyze cooper-
ative packet forwarding in [10–13]. In these games, play-
ers interact with each other in consecutive stages consider-
ing others’ actions in previous rounds of the game. There-
fore, they can be encouraged to cooperate with each other by
using incentive mechanisms such as reputation algorithms.
Markov games are also applied to address this issue in Ad-
hoc networks. In these games, actions of players are deter-
mined based on the current state of the game, instead of con-
sidering the complete game history.

In [14], Markov stationary game theory is applied to
model the competition between nodes in a basic relay net-
work, where the relay node has one buffer to keep all differ-
ent types of packets. In addition, the relay node rejects the
received packet from source node whenever there is a packet
in its transmit buffer. This means that when the source node
attempts to send a packet via the relay node to the desti-
nation, this packet is rejected by the relay node, if there is a
packet in its transmit queue. Therefore, source node’s packet
will remain at source node queue and the channel remains
unused, although there is no collision. This results in lower
system throughput performance, which is not desirable in
practical applications.

In this paper, we investigate this problem proposing three
solutions. In the proposed models, two different buffers are
assigned to the relay node to keep its own packets and the re-
ceived packets from the source node separately, and to apply
an appropriate transmission strategy for each buffer. This so-
lution provides the relay node with the option of accepting
packets from the source node even if it has a packet in its
transmit queue.

Two Markovian stationary game solutions are proposed
to model packet forwarding in multiple-access channels, in
which simultaneously transmitted packets are dropped. In
the first solution, the relay node is assumed to be reliable
in the sense that, it transmits the received packets from the
source node in the next time slot, even if it has its own pack-
ets in the transmit queue. This model, named as reliable
relaying method is more efficient in terms of channel use,
compared to the prior works reported in [14].

In the second solution, another relaying approach is pro-
posed where the relay node can decide to transmit either its
own packet or the received packet from source node, when
both are in the queue. The advantage of this solution, which
is called flexible relaying method is that a more flexible strat-
egy is utilized to forward the packets in the relay node.

The third solution covers a more general case of multiple-
access channels, where both simultaneously transmitted
packets are not discarded. Interference is not avoidable in
most of applications, but it does not necessarily cause packet
loss. The packet loss depends on several parameters, spe-
cially on the level of interference. For instance, in Code Di-
vision Multiple Access (CDMA) systems, the receiver cap-
tures the desired packet from a number of simultaneously

interfering packets using orthogonality of the codes. Even,
in a multiple-access slotted ALOHA system, not any colli-
sion results in a packet loss [15]. A novel stochastic game
theoretical model is proposed to provide a case in which one
of the collided packets can be captured based on physical
layer parameters.

The first solution is suitable for applications where the
main goal is transmitting the source node’s packets to the
destination. Therefore, the relay node assigns a higher prior-
ity to the received packets from source node. While the sec-
ond solution is applicable in homogeneous systems where
both nodes have the same priority to transmit their packets.
In this method, the relay node selects a proper strategy to
maximize its utility considering the game conditions, which
provides a better performance, specially when the relay node
has a high packet generation rate.

For the proposed Markovian game theoretical models,
state of the game is defined as the number of packets in
source and relay nodes’ buffers. In all the proposed solu-
tions, it is assumed that this parameter is broadcasted by the
nodes on a common channel such that the state of game is
known for all players. This assumption makes the proposed
solutions applicable to decentralized Ad-hoc networks, be-
cause there is no need to have a central station to control
the network and each node can independently select its best
strategy set considering the game conditions.

The rest of this paper is organized as follows. Stochastic
game theory is studied in Sect. 2. System model of the pro-
posed relay network is presented in Sect. 3. Reliable relay-
ing method is discussed in Sect. 4. In this section, the corre-
sponding game definitions consisting of available action sets
of each node, state transition matrix and utility functions of
players are defined. In Sect. 5, a flexible relaying method is
developed. The third scenario is specified in Sect. 6. Numer-
ical results for the proposed models are presented in Sect. 7,
followed by conclusion in Sect. 8.

2 Stochastic games

In this section, a brief introduction to game theory is pre-
sented. A Markovian game theoretical model which is the
basis of our proposed analysis model, is studied in more
depth.

Game theory is an analytical approach to model the in-
teractions between some rational players that compete to
obtain a common interest. It also provides a mathematical
method to find the best possible strategy for each player [16,
17]. Each game is represented by (N, {Si}, {Ui}), i ∈ N ,
where

• N is a set of players.
• {Si} is strategy set of player i, and si ∈ Si , a strategy of

player i.



Stochastic game theoretical model for packet forwarding in relay networks 1879

• {Ui} is utility function of player i.

Strategy set defines players’ behavior facing different sit-
uations in the game, including pure and mixed strategies.
Pure strategies show the deterministic actions of players in
different situations and mixed strategies describe the prob-
ability of selecting a pure strategy that provides a chance
of choosing one of the available actions, in random. Strat-
egy profile of the game is denoted as S, with S = S1 ×
S2 × · · · × SN , where Si is the strategy set of player i.

Solution of the game achieves the Nash equilibrium strat-
egy set of all players when each rational player selects its
best possible response to other players’ strategies, provided
that neither player can increase its utility by unilaterally
changing its strategy. A strategy profile, S∗ achieves Nash
equilibrium iff,

∀i ∈ N, ∀si ∈ Si, Ui(s
∗
i , s∗−i ) ≥ Ui(si , s

∗−i ) (1)

where, s−i , denotes the strategy profile of all players except
player i.

In one-stage game, each selfish player decides to maxi-
mize its own utility. In this case, it is not possible to enforce
players to cooperate with each other. In repeated games,
game is played several times and in each round, the actions
and outcomes of previous rounds are observable. Consider-
ing the current reputation of players, they can be encouraged
to cooperate with each other. In Markov games, instead of
considering the complete history of the game, agents’ ac-
tions are based on the current state of the game. A Markov
game can be modeled with a n × n state transition matrix,
denoted by T , where n represents the number of states. Each
element of this matrix, pij shows the probability of mov-
ing from state i in time n to state j in time n + 1, where
pij ≥ 0,∀i, j , and

∑n
j=1 pij = 1,∀i.

Class of stochastic games first introduced in [18]. In these
games, complete history of the game in each round is sum-
marized in a state, that follows a Markov process. Hence,
the current state and the action profile of players determine
the next state [19, 20].

A discrete time stochastic game with N player is shown
by (Q, {Ai}Ni=1, {Ui}Ni=1, t), where

• Q, is the Borel state space.
• Ai , is the action set of player i, and A = A1 × · · · × AN ,

denotes the action profile of all players.
• Ui : Q × A → R, where R is Real set. Ui determines the

immediate utility function of player i, which depends on
the current state and the action profile of the game.

• t : Q × A → [0,1], is the transition probability function.

In these games, the action set of players in time slot n is
denoted by An, where An ∈ A. Action set An is a function
of the current state of the game qn, (qn ∈ Q). Next state
is specified by the current state, qn and the selected action

sets by player in current time slot, An. Transition function
T (qn+1|qn,An), determines the transition probability from
state qn to state qn+1. In this time slot, the immediate utility
of player i is a function of the game action profile and the
current state of the game, therefore Un

i = f (An, qn).
History of the game in the nth time slot is defined as a

sequence of the current state of the game, all the previous
states, and action profiles of the game that are observable by
all players and is denoted as,

hn = (q0,A0, q1,A1, q2,A2, . . . , qn−1,An−1, qn) (2)

where it is assumed that the game is started at state q0 in
time n = 0. Strategy profile of the game in the nth time slot,
is denoted as,

S = (S1, S2, . . . , SN) (3)

As mentioned before, in mixed strategy games, strategy
profile describes the probability of choosing action profile
A = (A1,A2, . . . ,AN) by the players.

If P S
q0 determines the probability distributions of game

over the action profile and states of the whole game his-
tory, for any strategy profile S and any initial state q0, the
expected time averaged payoff of player i is defined as fol-
lows [20],

Ui(S, q0) = lim
T →∞

1

T
ES

q0

[
T∑

n=1

Un
i (An, qn)

]

(4)

where ES
q0 [ ] is the expectation operation over the probabil-

ity distribution P S
q0 .

A strategy is called stationary if the strategy profile of
the game in the nth time slot shown by (Sn) only depends
on the current state of the game, rather than on the complete
game history. The stationary strategy profile of all players
is denoted by δ = (δ1, δ2, . . . , δN ). Notation Π(δ) repre-
sents the stationary probability distribution over states, such
that Π(δ) = Π(δ) × T (δ), where T (δ) is the state transition
matrix and × denotes matrix multiplication. For example
Πk(δ) determines the stationary probability of the kth state.

In the stationary case, instead of time averaged expec-
tation, the expectation over state distribution is applicable,
hence the stationary utility function of player i is driven as
follows,

Ui(δ) =
∑

qk∈Q

Πk(δ)E[Ui(qk, δ)] (5)

where E[Ui(qk, δ)] is the expected utility of player i in the
kth state over the stationary strategy δ.

In Markov stationary games, a stationary strategy profile,
δ∗ is Nash equilibrium for any initial state, q0 iff,

∀i ∈ N, Ui(q
0, δ∗

i , δ∗−i ) ≥ Ui(q
0, δi , δ

∗−i ) (6)
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It is proved in [16] that a stochastic game with finite num-
ber of states and actions has a Nash equilibrium. In this pa-
per, a two-player Markov game with finite number of states
and finite number of possible actions for each player is de-
fined to model the packet forwarding in a basic relay net-
work. Both cases of non-cooperative and cooperative games
are considered in this study. In non-cooperative games, each
player i selfishly maximizes its own stationary utility func-
tion, Ui(δ) to reach the best response Nash equilibrium
strategies, based on (5), (6). While in cooperative games,
players collaborate with each other to jointly maximize the
total utility of the game.

3 System model

In this paper, a basic relay network which consists of a
source node, a relay node and a destination node is consid-
ered, as depicted in Fig. 1. The source node can either send
its packet directly to the destination or to the relay node to
be forwarded to the destination. The relay node can either
accept the received packet or reject it. It also may transmit
its own packet or forward the previously received packet to
the common destination. The study of algorithms to find the
best relay node from available intermediate nodes is out of
the scope of this article and it is assumed that the best relay
node is already selected considering energy efficiency, path
length and link quality.

In the proposed model, it is assumed that source and re-
lay nodes share the same channel to transmit their packets to
the destination and simultaneous transmission results in col-
lision. Source and relay nodes attempt to transmit their pack-
ets randomly based on slotted ALOHA protocol. Moreover,
it is assumed that both source and relay nodes broadcast the
number of packets in their buffers at the end of each time
slot. Also the broadcast information includes the delivery
status of the packets as well as the channel quality. This as-
sumption enables transmitters to adjust their transmit power
to ensure successful packet delivery to the destination when

Fig. 1 System model for the proposed relay network, where S,R and
D represent source, relay and destination nodes, respectively

no collision occurred. Therefore, packets leave the transmit
buffer after successful transmission with appropriate power
level. In the case of packet transmission failure in any time
slot, packets remain in the buffer until they are transmitted in
the next time slots by an Automatic Repeat-reQuest (ARQ)
retransmission protocol.

The system is modeled as a two-player game, including
source and relay nodes, denoted by S and R, respectively.
The source node has a single transmit buffer to keep the gen-
erated packets prior to sending and the relay node has two
transmit buffers, all of which lengths are equal to one. The
first buffer of relay node is called internal buffer and con-
tains the generated packets at the relay node. The second one
is called forward buffer, which contains the received packets
from the source node in the previous time slots. Packets are
generated at source and relay nodes independently by rates
gs and gr , respectively provided that their buffers are empty
at the end of the previous time slot. The system is modeled
as a Markovian stationary process, in which occupancy sta-
tus of buffers is defined as the state of the Markovian game.
The buffer occupancy has two possible states that is either
empty or full. Therefore, the total number of states is 23 = 8.
State of the game is defined as {BS, BR, BF }, where the el-
ements represent number of packets in the source buffer, the
relay node internal buffer and the relay node forward buffer,
respectively.

The proposed game is modeled as a complete informa-
tion game, where each player knows the current state and
available action sets as well as the outcomes of actions for
all the players. Therefore, each of the two players are aware
of all the possible actions of the other player and the cor-
responding utility of each action. Moreover, considering the
information provided by the broadcast channel, both players
can observe the current state of the game in each time slot
that is defined by the number of packets in the buffers. How-
ever, they are not aware of the selected action by the other
node. For instance, they do not know whether their opponent
attempts to send its packet or not, therefore in each time slot,
they select their actions based on the game status, including
current state, packet transmit energy, packet arrival rate, as
well as cooperation reward regardless of the action actually
taken by the other node.

In the rest of this paper, three different relaying meth-
ods are proposed. In the first two methods, a scenario is
considered where simultaneous packet transmission ends
up with packet failure, but in the third method, a more
general case where one of the simultaneously transmitted
packets can be captured at the destination is considered
taking into account the channel conditions and the signal
power.
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4 Reliable relaying method

The first approach in this article is to utilize the proposed
system model in a reliable relay network, in which it is as-
sumed that the relay node can behave selfishly, but it is nei-
ther a malicious player nor an unreliable player. This means
that the relay node might reject the packet sent by the source
node, but it never drops the accepted packet from the source.
Moreover, the reliable relaying approach is considered such
that the relay node certainly transmits the accepted packet
in the next time slot even if there is a generated packet in its
internal buffer.

4.1 Strategy set of players for reliable relaying method

In this section, possible action sets of players are described.
When the transmit buffer of source is occupied, the source
node takes one of the three possible actions, including (i)
sending the packet directly to the destination, (ii) relaying
it to the relay node and (iii) waiting. These possible ac-
tions of source node are denoted by vector (Ssd , Ssr ,Ws).
Similarly, the action set of relay node is shown by vector
(Srd, Sf ,Wr,Af ,Rf ), where the parameters are (i) sending
its own packet to the destination, (ii) forwarding the source
packet, (iii) waiting, (iv) accepting a packet from the source
node and (v) rejecting it, respectively.

The mixed stationary strategies of players is defined as
the probability distribution of the available actions. Strategy
space of source node is denoted by (psd, psr , psw), where

• psd , is the probability of sending a packet from the source
node to the destination node.

• psr , is the probability of sending a packet from the source
node to the relay node.

• psw , is the probability of waiting at source node.

Source node selects one of the three available actions,
therefore summation of these probabilities is one and
two of them completely define strategy set of the source
node. Strategy set of the relay node is denoted by vector
(prd, pf , prw, pac, pr), which consists of probabilities of
different actions taken by the relay node including,

• prd , probability of sending a packet from the relay node
to the destination.

• pf , probability of forwarding the received packet to the
destination.

• prw , probability of waiting at the relay node.
• pac, probability of accepting the received packet from the

source node.
• pr , probability of rejecting the received packet from the

source node.

Since a reliable relaying is desired, relay node cer-
tainly transmits the packet in its forward queue, which

Table 1 Strategy set of players for reliable relaying method

Current state of the game Strategy set of players

(BS,BR,BF ) (psd ,psr ,prd ,pac)

S1 = (0,0,0) (0,0,0,pac)

S2 = (0,0,1) (0,0,0,0)

S3 = (0,1,0) (0,0,prd ,pac)

S4 = (0,1,1) (0,0,0,0)

S5 = (1,0,0) (psd ,psr ,0,pac)

S6 = (1,0,1) (0,0,0,0)

S7 = (1,1,0) (psd ,psr ,prd ,pac)

S8 = (1,1,1) (0,0,0,0)

means pf = 1 for states {(0,0,1), (0,1,1), (1,0,1) and
(1,1,1)}, and pf = 0 for other states. As a result, prob-
ability of forwarding a packet by the relay node is com-
pletely determined by the state of the game. When there
is a packet in the forward buffer, the relay node does not
accept a packet from the source node. When the forward
buffer is empty, the relay node can either transmit its own
packet if there is any or wait. Similar to the above justifica-
tion for the source node, the equations prd + pf + prw = 1,
and pac + pr = 1 can be written for the relay node as well.
pf is already specified by the state of the game, therefore,
(prd,pac) can be selected to present the strategy set of relay
node. Consequently, mixed stationary strategy profile of the
game is determined by δ = (psd ,psr ,prd,pac).

It is noticed that in complete information games, players
are aware of the current state of the game and the possible
action sets of their opponents in different states. When there
is a packet in the relay node’s forward buffer, the source
node realizes that it would be sent by relay node, so if the
source node attempts to transmit its own packet, both pack-
ets will be blocked on the channel due to collision. In this
case, to avoid collision and reduce energy consumption by
both nodes, a cooperative response is assigned to the source
node, such that it waits, no matter there is a packet in its own
queue or not.

According to the above terminology and assumptions, the
mixed strategy sets of nodes regarding the current state of
the game is summarized in Table 1.

4.2 State transition probability matrix for reliable relaying
method

Transition matrix specifies the transition probability be-
tween states. Transition probability from state i to j in con-
secutive time slots is denoted as Tij (δ), i, j ∈ {1, . . . ,8}.

According to the defined states and the strategy sets of
players, the state transition matrix, T (δ) is provided in Ap-
pendix A. For example, the seventh row of the state transi-
tion probability matrix for the proposed game is presented
in Fig. 2.
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Fig. 2 State diagram representing the 7th row of the state transition
matrix

4.3 Expected payoff function of players

Payoff function of players are defined as the difference be-
tween the obtained rewards and paid costs for a specific
strategy set. As mentioned in Sect. 2, in stationary Marko-
vian games, the expected value of utility over the state dis-
tribution is defined as the utility function of each player.

The assigned costs and rewards to different possible ac-
tions are based on the following rules.

Each node receives the delivery reward, denoted by Rd ,
for successful delivery of a packet to the destination node.
Basically, a selfish relay node intends to transmit its own
packet and avoids cooperation by rejecting the source node’s
packets. Hence it should be encouraged by a method to for-
ward the source node’s packets to the destination in order
to increase the system throughput. To do so, a reward based
mechanism is utilized, in such a way that whenever the re-
lay node accepts a packet from the source node, it receives a
reward called forwarding reward, Rf from the source node.
This reward is considered to provide incentive to the relay
node for accepting source node’s packet and forwarding it
to the destination node in the next time slots. The source
node receives the delivery reward, Rd when the relay node
successfully transmits the forwarded packet to the destina-
tion.

Transmission cost is defined as the cost of the required
energy for transmission of a single packet with acceptable
reliability over the channel and is denoted by Ct

ij , where
i and j represent the origin and target nodes, respectively.
This cost depends on several parameters such as length and
quality of the path. For example, Ct

sr is the transmission cost
of sending a packet from the source node to the relay node.

Keep cost, Ck is defined to encourage nodes to attempt
sending their packets and prevent waiting as much as pos-
sible. Waiting is not desirable since it will contribute to the
latency in the network and will reduce the systems through-
put. This delay cost, is also applied to the retransmission
of the corrupted packets, due to collision, as well as the re-
jected packets by relay node that should be retransmitted to
the destination in the next time slot. Relaying delay cost, Cr

is defined as a cost that the source node pays if it decides to
send its packet via the relay node to the destination, due to
causing undesired delay in the system.

According to aforementioned definitions, utility func-
tions of both source and relay nodes are presented in (7)
and (8) based on definition of stationary utility function
in (5).

U1(δ) = Π2(δ) × {(Rd)} + Π4(δ) × {(Rd)}
+ Π5(δ) × {psd(Rd − Ct

sd) + psr .pac(−Rf − Ct
sr − Cr)

+ psr(1 − pac)(−Ck − Ct
sr ) + (1 − psr − psd)(−Ck)}

+ Π6(δ) × {(Rd − Ck)}
+ Π7(δ) × { psd(1 − prd)(Rf − Ct

sd)

+ psd .prd(−Ck − Ct
sd)

+ psr(1 − prd). pac(−Rd − Ct
sr − Cr)

+ psr(1 − pac + prd . pac)(−Ck − Ct
sr )

+ psr . prd(−Ck − Ct
sr ) + (1 − psr − psd)(−Ck)}

+ Π8(δ) × {Rd − Ck} (7)

U2(δ) = Π2(δ) × {(−Ct
rd)}

+ Π3(δ) × {prd(Rd − Ct
rd) + (1 − prd)(−Ck)}

+ Π4(δ) × {(−Ct
rd − Ck)}

+ Π5(δ) × { psr . pac(R
f )}

+ Π6(δ) × {(−Ct
rd)}

+ Π7(δ) × { prd(1 − psr − psd)(Rd − Ct
rd)

+ prd(psr + psd)(−Ck − Ct
rd)

+ (1 − prd). psr . pac(R
f − Ck)

+ (1 − prd)(1 − psr . pac)(−Ck)}
+ Π8(δ) × {(−Ct

rd − Ck)} (8)

5 Flexible relaying method

In this section, the second proposed method is described. In
the first proposed method, the relay node prefers to forward
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Table 2 Strategy set of players for flexible relaying method

Current state of the game Strategy set of players

(BS,BR,BF ) (psd ,psr ,prd ,pf ,pac)

s1 = (0,0,0) (0,0,0,0,pac)

s2 = (0,0,1) (0,0,0,pf ,0)

s3 = (0,1,0) (0,0,prd ,0,pac)

s4 = (0,1,1) (0,0,prd ,pf ,0)

s5 = (1,0,0) (psd ,psr ,0,0,pac)

s6 = (1,0,1) (psd ,psr ,0,pf ,0)

s7 = (1,1,0) (psd ,psr ,prd ,0,pac)

s8 = (1,1,1) (psd ,psr ,prd ,pf ,0)

the received packets from the source node rather than trans-
mitting its own packets. However, in some wireless Ad-hoc
networks, there is no priority between packets generated at
the source node and the relay node. A new method called
as flexible relaying method is defined to optimize the overall
throughput of these systems. In this method, when the relay
node has both its own packet and received packet from the
source node, it can select to transmit either of them. Conse-
quently, one more degree of freedom is added to the strategy
set of relay node that enables it to make a better decision to
increase its utility.

Strategy set of the relay node in this method is pre-
sented by (prd,pf ,prw,pac,pr), which are probability of
(i) sending a packet to the destination, (ii) forwarding the
received packet, (iii) waiting, (iv) accepting the source node
packet, and (v) rejecting it, respectively. Since, prd + pf +
prw = 1, and pac + pr = 1, therefore, (prd,pf ,pac) are
selected to present the strategy set of relay node. The fol-
lowing probability vector models the strategy profile of the
game (psd ,psr ,prd,pf ,pac).

According to the above terminology and assumptions, the
action sets of nodes for all possible states are provided in
Table 2.

5.1 State transition probability matrix for flexible relaying
method

The corresponding state transition matrix of this scenario
is developed and presented in Appendix B. Similar to reli-
able relaying method, each element of state transition ma-
trix, Tij (δ) represents the transition probability of stationary
strategy profile (δ) from state i to j in two consecutive time
slots.

5.2 Expected payoff function of player

Payoff functions of flexible relaying model are defined in
this section. All rewards and costs are defined similar to re-
liable relaying game model.

Keeping forward cost denoted by Ckf is paid by relay
node when it avoids transmitting the packet in the forward
buffer. This cost is selected greater than keep cost, Ck in
order to encourage the relay node to transmit these packets
with higher priority than its own packets. Otherwise, the re-
lay node performs selfishly and prefers to transmit its own
packets.

The expected utility functions of both source and relay
nodes in the stationary strategy profile of (δ) for this method
are defined in (9) and (10).

U1(δ) = Π2(δ) × {pf . Rd} + Π4(δ) × {pf . Rd}
+ Π5(δ) × {psd(Rd − Ct

sd)

+ psr . pac(−Rf − Ct
sr − Cr)

+ psr(1 − pac)(−Ck − Ct
sr ) + (1 − psr − psd)(−Ck)}

+ Π6(δ) × {psd(1 − pf )(Rd − Ct
sd)

+ psd . pf )(−Ck − Ct
sd) + psr(−Ck − Ct

sr )

+ (1 − psr − psd) × [pf (Rd − Ck) + (1 − pf )(−Ck)]}
+ Π7(δ) × {psd(1 − prd)(Rd − Ct

sd)

+ psd . prd(−Ck − Ct
sd)

+ psr(1 − prd). pac(−Rf − Ct
sr − Cr)

+ psr(1 − pac + prd . pac)(−Ck − Ct
sr )

+ (1 − psr − psd)(−Ck)}
+ Π8(δ) × { psd(1 − prd − pf )(Rd − Ct

sd)

+ psd(prd + pf )(−Ck − Ct
sd) + psr(−Ct

sr − Ck)

+ (1 − psr − psd)(−Ck) + (1 − psr − psd). pf (Rd)} (9)

U2(δ) = Π2(δ) × {pf (−Ct
rd) + (1 − pf )(−Ckf )}

+ Π3(δ) × {prd(Rd − Ct
rd) + (1 − prd)(−Ck)}

+ Π4(δ) × {prd(Rd − Ct
rd − Ckf )

+ pf (−Ct
rd − Ck) + (1 − prd − pf )(−Ck − Ckf )}

+ Π5(δ) × {psr .pac(R
f )}

+ Π6(δ) × {pf (1 − psr − psd)(−Ct
rd)

+ pf (psd + psr)(−Ckf − Ct
rd) + (1 − pf )(−Ckf )}

+ Π7(δ) × {prd(1 − psr − psd)(Rd − Ct
rd)

+ prd(psr + psd)(−Ck − Ct
rd)

+ (1 − prd).psr .pac(R
f ) + (1 − prd)(−Ck)}

+ Π8(δ) × {prd(1 − psr − psd)(Rd − Ct
rd)

+ prd(psr + psd)(−Ck − Ct
rd)
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+ pf (1 − psr − psd)(−Ct
rd)

+ pf (psr + psd)(−Ckf − Ct
rd)

+ (1 − prd − pf )(−Ckf − Ck)} (10)

6 Collision adaptive method

In previously discussed methods, both source and relay
nodes’ packets are dropped in the case of simultaneous
transmission due to collision. In this section, a different sce-
nario is defined where one of the simultaneously transmit-
ted packets can be captured based on the physical layer pa-
rameters. To consider collision in this system model, first
the collision effect on bit error rate (BER) and packet error
rate (PER) in multiple-access channels is investigated, then
packet error rate is considered as a function of system trans-
mission specifications.

In interference channels, signal to interference and noise
ratio (SINR) is defined as,

SINR = hi.Pi

N0 + 1
L

∑N
j=1,j �=i hj .Pj

(11)

where Pi is the transmission power of node i, hi is the chan-
nel gain between transmitter i and the receiver, N0 is the
noise power at the receiver and L, is the processing gain,
where L = 1 for narrowband systems and L 	 1 for wide
band systems. In the sequel, i = 1 is assigned to the source
node, and i = 2 is considered for the relay node, unless ex-
plicitly specified otherwise.

Probability of error is a function of SINR. This means
pb = f (SINR), where f is a system’s function depending
on transmission parameters, such as transmitter structure,
receiver sensitivity level, modulation, channel coding, data
transmission rate and several additional factors. Packet er-
ror rate, is a function of probability of bit error and packet
length. In most practical applications, a n-bit message is dis-
carded even if one bit is corrupted [21]. Therefore, packet
error rate is related to probability of bit error as follows,

PER = 1 − (1 − pb)
n (12)

A system dependent threshold level, Γ , is defined such
that when SINR is greater than it, the probability of bit error
is negligible; therefore, almost all packets are received at the
destination successfully. In other words, SINR > Γ , guaran-
tees error-free communication between source and destina-
tion node [15].

Both source and relay nodes adjust their powers such that
the SINR level at destination be higher than Γ , provided that
there is no interfering node. Hence, minimum transmission
power, P t

i (min) of the ith node is calculated as follows,

SINRi = P r
i

N0
= P t

i .hi

N0
≥ Γ (13)

P t
i (min) = Γ.N0/hi (14)

If both nodes attempt to transmit simultaneously with the
minimum power, the SINR value of node i is converted to

SINRi = P r
i

N0 + P r

ī

= P t
i .hi

N0 + P t

ī
.hī

= Γ

Γ + 1
, ī, i = 1,2, ī �= i (15)

This degradation at SINR level affects signal reception
severely depending on transmission technology. This effect
in some cases such as uncoded BPSK is more visible and
almost all the packets are lost, while in the other category of
systems such as DS-CDMA, the system performance does
not change considerably [22].

For instance, if a protocol with 64-bit length packets
is utilized using the uncoded Binary Phase Shift Keying
(BPSK) transmission system and coherent detection, proba-
bility of error for this system is calculated as follows,

Pb = Q(
√

2SNR) (16)

Therefore for an acceptable BER of 10−6, the required
SINR threshold to achieve this BER is Γ = 11.2975
(≈10.53 dB). In this system, if simultaneous packet trans-
mission occurs, the SINR level reduces to Γ

Γ +1 = 0.9187.
Consequently, the error probability increases to 0.0876, that
results in packet error rate equal to 1 − (1 − 0.0919)64 =
0.9979. This means that almost all the packets are lost.
Based on this justification, packet error probability of 1 is
used to model the most vulnerable systems to collision.

The other extreme case is CDMA systems, which are
very robust to interference. In CDMA systems, since trans-
mitters use orthogonal codes, the interfering signals do not
affect successful detection of the desired signal. In this tech-
nique, Γ is a very small value and it does not considerably
change when divided by Γ + 1. Hence, BER and PER of
CDMA systems are not changed considerably if new trans-
mitters are added to the system while they use orthogonal
codes. This can be considered as a system that is more ro-
bust to interference. In the proposed scenario, receiver ex-
pects signals from both source and relay nodes and since
the received power of both nodes are almost equal, one of
the transmitted signals is randomly detected. In this extreme
case, packet error rate for both source and relay nodes is as-
sumed to be one half [23, 24].

The following joint probabilities are defined in Table 3
to model packet error rate in case of collision for arbitrary
transmission techniques that makes the game model appli-
cable for different transmission technologies.



Stochastic game theoretical model for packet forwarding in relay networks 1885

Table 3 Probability of packet reception at destination node when col-
lision occurs

Parameter Definition

p(s, r̄|d) Probability of successful reception of

source node packet only, when collision

occurs at destination.

p(s̄, r|d) Probability of successful reception of

relay node packet only, when collision

occurs at destination.

p(s, r|d) Probability of successful reception of

both packets.

p(s̄, r̄|d) Probability of failure of both packets.

Since, just one packet can be detected by destination node
at each time slot, we have

p(s, r|d) = 0 (17)

p(s, r̄|d) + p(s̄, r|d) + p(s̄, r̄|d) = 1 (18)

Therefore, the probability of failure of source and relay
nodes’ packets are calculated as,

pe(s|d) = p(s̄, r|d) + p(s̄, r̄|d) (19)

pe(r|d) = p(s, r̄|d) + p(s̄, r̄|d) (20)

6.1 Averaged system throughput

In Ad-hoc wireless systems with ALOHA access protocol
that all nodes make independent channel requests, Multi-
Packet Reception (MPR) matrix, denoted by R is defined
to model the channel efficient throughput [24, 25].

R =

⎛

⎜
⎜
⎜
⎜
⎝

ρ10 ρ11 0 0 . . . 0 . . .

ρ20 ρ21 ρ22 0 . . . 0 . . .

. . . . . . . . . . . . . . . . . . . . .

ρn0 ρn1 ρn2 . . . . . . ρn0 . . .

. . . . . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎠

(21)

where ρij is the probability of successful reception of j

packets from i transmitted packets. The average throughput
of the system, with n transmitter nodes is defined as the ex-
pected number of successfully transmitted packets when all
the nodes transmit simultaneously,

μ =
n∑

k=0

kρnk (22)

The MPR matrix for the proposed two player case is sim-
plified to

R =
(

ρ10 ρ11 0
ρ20 ρ21 ρ22

)

(23)

This model is applied to calculate the efficient throughput
of the proposed system model.

μi(q) is defined as the probability of successful packet
transmission by node i at state q , which is calculated as fol-
lows

μi(q) = psend
i (q).[(1 − psend

ī
(q)) + psend

ī
(q). p(i, ī|d)]

(24)

where psend
i (q) is the probability of sending a packet by

node i at state q . The average throughput of each node i,
denoted by μ̄i is calculated as follows

μ̄i = E

(
8∑

q=1

Πq × μi(q)

)

(25)

where Πq is the probability of state q of the game. The aver-
age throughput of the system, μ̄ is the summation of source
and relay nodes throughputs, (μ̄ = ∑2

i=1 μ̄i).

6.2 Averaged transmission delay

One other important specification of the system is the aver-
age delay of packet transmission. In applications, with strict
latency requirement, the maximum transmission delay of
the system should be less than an acceptable value. Aver-
aged packet transmission delay is defined similar to aver-
age throughput of the system. If a packet remains at each of
transmit buffers, a delay counter is set for the corresponding
node. If the source node’s packet is transmitted to relay, a
delay is counted for source node and while the packet re-
mains at forward buffer of the relay node, more delay coun-
ters are accumulated until it is forwarded to the destination.
The average delay of both source and delay nodes presented
by d̄i as well as the average delay of system denoted by d̄

are defined as,

d̄i = E

(
8∑

q=1

Πq × di(q)

)

(26)

d̄ =
∑2

i=1 gi.d̄i
∑2

i=1 gi

(27)

where gi is the packet generation rate at node i and di(q)

is the probability of keeping a packet at transmit buffer of
node i at state q .

6.3 Strategy set and state transition matrix for the collision
adaptive method

Considering these facts, a new stochastic game theoretical
model is defined. Players’ strategy profile of this scenario
is similar to Sect. 5, which was described in Table 2. The
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proper transition probability matrix is defined for this new
system model as well as the corresponding utility of players.

For instance, the transition from state 110 to 010 is cal-
culated as follows. This transition occurs when the source
buffer becomes empty due to successful transmission of a
packet from the source node to the destination, while there
is no new generated packet at the source node. There are two
possibilities for this transition,

• Source node attempts to transmit a packet to the destina-
tion, while the relay node waits. This probability is calcu-
lated as, (1 − gs)psd × (1 − prd).

• Source node attempts to transmit a packet to the destina-
tion, while relay node also attempts to transmit a packet
from its internal buffer to the destination that causes col-
lision. Hence an extra term is considered to represent the
probability of successful delivery of source node packet.
This probability can be calculated as, (1 − gs)psd ×
[prd .p(s, r̄|d)].
The complete transition matrix for this scenario is pre-

sented in Appendix C.

6.4 Expected payoffs of players

In this section, utility functions of players are defined. Simi-
lar to Sect. 5.2, rewards and costs for different actions are
considered. The expected utility functions of source and
relay nodes in a stationary strategy profile (psd ,psr ,prd,

pf ,pac) are defined as follows.

U1(δ) = Π2(δ) × {pf . Rd} + Π4(δ) × {pf . Rd}
+ Π5(δ) × {psd(Rd − Ct

sd) + psr . pac(−Rf − Ct
sr − Cr)

+ psr(1 − pac)(−Ck − Ct
sr ) + (1 − psr − psd)(−Ck)}

+ Π6(δ) × {psd(1 − pf + pf . p(s, r̄|d)(Rd − Ct
sd)

+ psd . pf . p(s̄, r̄|d)(−Ck − Ct
sd)

+ psd . pf . p(s̄, r|d)(Rd − Ct
sd − Ck)

+ psr(−Ck − Ct
sr ) + psr . pf (1 − pe(r|r))(Rd)

+ (1 − psr − psd) × [pf (Rd − Ck) + (1 − pf )(−Ck)]}
+ Π7(δ) × {psd(1 − prd + prd . p(s, r̄|d))(Rd − Ct

sd)

+ psd . prd . p(s̄, r|d)(−Ck − Ct
sd)

+ psr(1 − prd). pac(−Rf − Ct
sr − Cr)

+ psr(1 − pac + prd . pac)(−Ck − Ct
sr )

+ (1 − psr − psd)(−Ck)}
+ Π8(δ) × { psd(1 − prd − pf + (prd + pf ). p(s, r̄|d)

× (Rd − Ct
sd)

+ psd(prd + pf )(1 − p(s, r̄|d))(−Ck − Ct
sd)

+ psd . pf . p(s̄, r|d)(Rd) + psr(−Ct
sr − Ck)

+ psr . pf (1 − pe(r|r))(Rd) + (1 − psr − psd)(−Ck)

+ (1 − psr − psd). pf (Rd)} (28)

U2(δ) = Π2(δ) × {pf (−Ct
rd) + (1 − pf )(−Ckf )}

+ Π3(δ) × {prd(Rd − Ct
rd) + (1 − prd)(−Ck)}

+ Π4(δ) × {prd(Rd − Ct
rd − Ckf )

+ pf (−Ct
rd − Ck) + (1 − prd − pf )(−Ck − Ckf )}

+ Π5(δ) × {psr .pac(R
f )}

+ Π6(δ) × {pf × [1 − psr − psd + psr(1 − pe(r|r))
+ psd . p(s̄, r|d)](−Ct

rd)

+ pf × [psd(1 − p(s, r̄|d)) + psr . pe(r|r)]
× (−Ckf − Ct

rd) + (1 − pf )(−Ckf )}
+ Π7(δ) × {prd × [1 − psr − psd + psr(1 − pe(r|r))
+ psd . p(s̄, r|d)] × (Rd − Ct

rd)

+ prd × [psr . pe(r|r) + psd(1 − p(s, r̄|d))](−Ck − Ct
rd)

+ (1 − prd). psr . pac(R
f ) + (1 − prd)(−Ck)}

+ Π8(δ) × {prd(1 − psr − psd + psr(1 − pe(r|r))
+ psd . p(s̄, r|d))(Rd − Ct

rd)

+ prd(psr . pe(r|r) + psd(1 − p(s, r̄|d)))(−Ck − Ct
rd)

+ pf (1 − psr − psd + psr(1 − pe(r|r))
+ psd . p(s̄, r|d))(−Ct

rd)

+ pf (psr . pe(r|r) + psd(1 − p(s, r̄|d)))(−Ckf − Ct
rd)

+ (1 − prd − pf )(−Ckf − Ck)} (29)

7 Numerical results

In this section, numerical results are provided to investi-
gate system performance in terms of achieved utility, av-
erage throughput and average transmission delay for three
proposed methods versus different system parameters.

System performance is analyzed for both cooperative and
non-cooperative solutions of the game scenarios. In a coop-
erative solution, both nodes try to maximize the summation
of both utilities jointly, so the utility is the maximum achiev-
able utility for the game model in a given condition. While in
non-cooperative solution, each node selfishly tries to find the
best possible strategy set to maximize its own payoff func-
tion based on (5). Best response Nash equilibrium strategy
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Table 4 Strategy profile of the game analysis for different keep costs,
when Ct

sd = 0.5, Ct
sr = 0.1, gr = gs = 0.3, Ct

rd = 0.2, Rf = 0.4, Cr =
0.05

Keep cost Keep cost

Ck = 0.3 Ck = 0.5

psd = 0.65 psd = 0.75

psr = 0.35 psr = 0.15

prd = 0.55 prd = 0.65

pac = 0.75 pac = 0.85

profile is evaluated as system behavior in non-cooperative
scenario that does not necessarily result in a maximum to-
tal utility and it is more likely to yield a local maximum for
the utility. Performance of a non-cooperative solution may
be compared with a cooperative solution to verify how far it
is from the maximum achievable utility. Utilities of players
may be considered as a criteria to evaluate the system perfor-
mance. Besides that, the proposed systems performance is
examined in terms of throughput and latency to demonstrate
optimality of the taken strategies in different conditions.

In this section, first, the simulation results for reliable re-
laying method are provided as different strategy profiles of
the non-cooperative game versus different energy transmis-
sion cost. Also, utility, throughput and delay of the system
are presented for both cooperative and non-cooperative solu-
tions of the second proposed model named as flexible relay-
ing method. In continue the transmission delay of these two
systems are compared. Finally, performance of third pro-
posed method, collision adaptive method is considered and
compared to the second system to investigate the effect of
different packet error rates on the system performance.

Low packet transmission latency is one of the most im-
portant parameters in system performance analysis. How-
ever, there is a trade off between nodes’ tendency to trans-
mit their packets in order to get lower keep cost and waiting
to avoid collision. Keep cost, Ck models the system delay
tolerance in the suggested game theoretical models. In Ta-
ble 4, best response Nash strategy sets of players in the non-
cooperative game for reliable relaying method is presented
for different keep cost values. Based on this table result, it
is concluded that tendency of nodes to transmit their packets
to the destination increases for higher cost values, such that
both source and relay nodes prefer to transmit their packets
rather than keeping them.

In Fig. 3, the effect of path loss between source and des-
tination nodes on the system behavior is considered. Ct

sd

determines cost of reliable communication between source
and destination nodes, which in turn depends on path length,
quality of path and channel interference level. To study
source node behavior as a function of the channel condition,
other parameters are fixed at Ct

sr = Ct
rd = 0.1, gs = gr =

0.3,Ck = 0.1,Rf = 0.4,Cr = 0.05 that are also used in all

Fig. 3 Best response Nash equilibrium strategy set of source node
versus transmission cost between source and destination nodes in re-
liable relying method, Ct

sd . Game parameters are Ct
sr = Ct

rd = 0.1,
gr = gs = 0.3, Ck = 0.1, Rf = 0.4, Ca = 0.1

Fig. 4 Summation of utilities of source and relay nodes versus the re-
lay node packet generation rate for cooperative and non-cooperative
game models and different keep cost values in reliable relying method.
The game parameters are Ct

sr = 0.4, Ct
sr = Ct

rd = 0.1, gs = 0.3,
Rf = 0.4, Ca = 0.1

other simulations, unless explicitly specified otherwise. It is
shown that if the required cost of transmitting a packet to
the destination increases, probability of directly transmitting
packets from the source node to the destination node, psd is
decreased and probability of transmitting packets via the re-
lay node, psr is increased. In other words, the source node’s
incentive to directly transmitting its packets to the destina-
tion is reduced and it prefers to transmit its packets via the
relay node.

The summation of nodes’ utilities is depicted in Fig. 4
versus packet generation rate of source node for different
keep cost values in both cooperative and non-cooperative
solutions. The utility of system increase as the packet gener-
ation rate of source node increases due to more packet deliv-
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Fig. 5 Throughput of nodes versus packet generation rate at relay
node in flexible relying method

ery reward. Also, as expected, the sum utility of cooperative
game is greater than non-cooperative game due to joint op-
timization scheme in cooperative games. However, the per-
formance of system for non-cooperative solution is slightly
lower than cooperative one and it asymptotically approaches
the cooperative system performance. This result confirms
the appropriate strategy set of non-cooperative game model
that is more applicable in practical systems, where nodes
are not aware of each other’s selected strategy set. More-
over, the effect of different delay cost values Ck = 0.1, 0.2
on the utility of players is analyzed in Fig. 4. Summation of
players’s utilities decreases as the delay cost of system is in-
creased. Players adaptively take an appropriate strategy set
to maximize their utility noting the cost of transmission de-
lay. A higher value is set for keep cost in systems, where low
latency is desirable. Hence, the maximum achievable utility
in these systems is less than systems without strict delay re-
quirements.

In Fig. 5, throughput of both source and relay nodes are
shown versus the packet generation rate of relay node, gr .
In this case, the rest of system parameters are set at Ct

sd =
0.4,Ct

sr = Ct
rd = 0.1, gs = 0.3,Rf = 0.4,Cr = 0.05. The

throughput of relay node increases for higher values of
packet generation rate due to more successful packet trans-
mission. On the other hand, since relay node attempts to oc-
cupy the channel more often, source node intends to keep its
packets as much as possible to avoid collision that results in
lower throughput per time slot. Also, the probability of col-
lision and consequently failure to source node packet trans-
mission increases that causes more reduction in source node
throughput. Besides that, the relay node’s incentive to coop-
erate with the source node is reduced because of trade-off
between sending its own packets and received packets from
the source node. All that results in lower rates of source node
packet transmission as a side effect of higher packet gener-
ation rate of relay node. However, the total throughput of

Fig. 6 Average packet transmission delay of system versus packet
generation rate at source node in flexible relaying method

Fig. 7 Comparison of average packet transmission delay between re-
liable and flexible relying methods versus packet generation rate at
source node

system increases for higher packet generation rates in relay
node since the increase in relay node throughput is domi-
nant.

Figure 6 demonstrates the effect of packet generation rate
of source node on the average transmission delay of system.
It is obvious that higher packet generation rates increase the
probability of simultaneous packet transmission on the com-
mon channel that consequently increases transmission de-
lay because of retransmission of collied packets. Also, both
source and relay nodes select their strategy to avoid imme-
diate transmission of their packets in order to prevent colli-
sion. Consequently, average transmission delay of the sys-
tem, as well as delay of both nodes will be increased.

Transmission delay of the first and second proposed mod-
els are compared in Fig. 7. As mentioned in Sect. 4, in reli-
able relaying method a higher priority is assigned to source
nodes’ packets such that relay node transmits the received
packets from the source when both its internal and forward
buffers are occupied. Consequently, in this method source
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Fig. 8 Throughput of collision adaptive method versus packet genera-
tion rate at relay node for different packet error rates in case of collision

node has a lower transmission delay comparing to the flexi-
ble relaying method in which relay node can decide between
transmitting its own packets or received packets from the
source node. The same comparison result is also valid for
the average transmission delay of the system.

Figure 8 compares the average throughput of the third
proposed system (collision adaptive method) for different
packet error rates in case of collision occurrence. The re-
sult demonstrates that the maximum achievable throughput
is higher for the systems that are more robust to channel
interference and their packet error rates are lower in case
of collision. The proposed model is an adaptive model in
which players can take more appropriate strategies consid-
ering packet loss rate. One extreme case is packet error rate
equal to one that is equivalent to second proposed model
(flexible relying method), where we assumed that all pack-
ets are lost if collision occurs. Packet error rate equal to zero
is another extreme case that models interference robust sys-
tems such as CDMA. In these systems, the packet is cap-
tured in an almost error-free manner, if simultaneous packet
transmission occurs. Since the destination node can capture
only one packet in each time slot, in case of collision, one of
two simultaneously transmitted packets by source and relay
nodes is randomly captured by the destination. The results
confirm that the system with lower probability of packet loss
achieves higher data throughput under the same conditions.

Average delay of the third proposed system is also de-
picted in Fig. 9. The average delay of packet transmission
decreases as the packet error rate of system decreases. For
systems that are vulnerable to collision, the average delay is
about 0.25 time slot per packet, while this value is less than
0.05 time slot for systems with PER < 0.5. Because in in-
terference robust systems, the collision rarely results in less
packet loss and retransmission. Moreover, since in the third
proposed model, PER is utilized by nodes to select an appro-
priate strategy, they intend to transmit their packets sooner

Fig. 9 Average delay of packet transmission of collision adaptive
method versus packet generation rate at source node for different
packet error rates in case of collision

to maximize their payoffs and achieve delivery reward while
avoiding the keep cost. Therefore, the average transmission
delay of system will be very low.

8 Conclusion

In this article, the problem of optimizing a basic relay net-
work performance is investigated using Markov stationary
game theoretical model. In this approach, successful packet
delivery appears as a reward for relay and source nodes as
players of the game, while system requirements and limi-
tations such as power consumption and transmission delay
appear as the paid cost by players to define the game. Hence,
players intelligently take the best possible strategies to ob-
tain maximum reward and keep the paid cost as less as pos-
sible. The nodes behavior is analyzed as the strategy profile
of the game versus different energy costs and keep costs.

In the proposed model, two separate buffers are deployed
at the relay node to apply different strategies for the gener-
ated packets at the relay node and the received packets from
the source node. The relay node can apply different strate-
gies to these packets based on the system specifications and
performance criteria. Cooperative and non-cooperative solu-
tions for this model are provided. Simulation results demon-
strate that the system performance for non-cooperative solu-
tion being very close to the cooperative system. Despite the
cooperative solution, in the proposed non-cooperative solu-
tion, the players do not require to know each others strategy
sets. Hence, the proposed method can be utilized in most
practical applications of Ad-hoc wireless networks.

In the first model called reliable relaying method, the
relay node immediately forwards the received packet from
source node, even if it has its own packet to transmit. This
method is developed to model the systems in which the
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first priority is to transmit source node packets. A differ-
ent model, named flexible relaying method is developed to
address the systems with the same priorities for source and
relay node packets such as homogeneous Ad-hoc networks.
In this model, the relay node is not enforced to transmit re-
ceived packets from the source immediately. In this case,
the total utility of system may be increased due to usage of
a more flexible strategy set in the relay node.

Finally, the proposed model is extended to cover a more
general relay system, in which the collision occurrence does
not necessarily yield packet loss. The probability of packet
loss in the case of collision is considered as an input parame-
ter of the game such that players consider this probability in
selecting their strategy sets. This method results in higher
system performance. The throughput of system increases
and the transmission delay decreases for lower packet error
rates in the system.

Appendix A

In this appendix, the state transition probability matrix of
proposed Markovian game for reliable relaying method is
presented. To simplify the notation (Tij ) is used instead of
Tij (δ) to show the transition probability of stationary strat-
egy profile (δ).

T11 = (1 − gs)(1 − gr), T12 = 0, T13 = gr(1 − gs),

T14 = 0, T15 = gs(1 − gr), T16 = 0,

T17 = gs.gr , T18 = 0

T2 = T1

T31 = (1 − gs)(1 − gr).prd , T32 = 0,

T33 = (1 − gs)(1 − prd + gr .prd),

T34 = 0, T35 = gs(1 − gr).prd , T36 = 0,

T37 = gs(1 − prd + gr .prd), T38 = 0

T41 = T42 = 0, T43 = (1 − gs),

T44 = T45 = T46 = 0, T47 = gs, T48 = 0

T51 = (1 − gs)(1 − gr).psd ,

T52 = (1 − gs)(1 − gr).psr .pac,

T53 = gr(1 − gs).psd , T54 = gr(1 − gs).psr .pac,

T55 = (1 − gr) × [1 − psr − psd + psd .gs + psr(1 − pac)],
T56 = gs(1 − gr).psr .pac,

T57 = gr × [1 − psr − psd + psd .gs + psr(1 − pac)]
T58 = gs.gr .psr .pac

T61 = T62 = T63 = T64 = 0, T65 = (1 − gr),

T66 = 0, T67 = gr , T68 = 0 (30)

T71 = T72 = 0, T73 = (1 − gs).psd(1 − prd),

T74 = (1 − gs).psr .pac(1 − prd),

T75 = (1 − gr)(1 − psr − psd).prd, T76 = 0,

T77 = (1 − psr − psd)(1 − prd) + psd .prd + psr .prd

+ psr(1 − prd)(1 − pac) + gs.psd(1 − prd)

+ gr(1 − psr − psd).prd,

T78 = gs. psr .pac(1 − prd)

T81 = T82 = T83 = T84 = T85 = 0,

T86 = 0, T87 = 1, T88 = 0 (31)

Appendix B

In this appendix, the transition probability matrix of pro-
posed Markovian game for flexible relaying method is pre-
sented. To simplify the notation (Tij ) is used instead of
Tij (δ) to show the transition probability of stationary strat-
egy profile (δ).

T11 = (1 − gs)(1 − gr), T12 = 0, T13 = gr(1 − gs),

T14 = 0, T15 = gs(1 − gr),

T16 = 0, T17 = gs.gr , T18 = 0

T21 = (1 − gs)(1 − gr).pf ,

T22 = (1 − gs)(1 − gr)(1 − pf ),

T23 = gr(1 − gs).pf , T24 = gr(1 − gs)(1 − pf ),

T25 = gs(1 − gr).pf , T26 = gs(1 − gr)(1 − pf ),

T27 = gs.gr .pf , T28 = gs.gr (1 − pf )

T31 = (1 − gs)(1 − gr).prd ,

T32 = 0, T33 = (1 − gs)(1 − prd + gr .prd),

T34 = 0, T35 = gs(1 − gr).prd , T36 = 0,

T37 = gs(1 − prd + gr .prd), T38 = 0

T41 = 0, T42 = (1 − gs)(1 − gr).prd,

T43 = (1 − gs).pf ,

T44 = (1 − gs)(1 − prd − pf + gr .prd),

T45 = 0, T46 = gs(1 − gr).prd , T47 = gs.pf ,

T48 = gs(1 − prd − pf + gr .prd)
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T51 = (1 − gs)(1 − gr).psd ,

T52 = (1 − gs)(1 − gr).psr .pac,

T53 = gr(1 − gs).psd , T54 = gr(1 − gs).psr .pac,

T55 = (1 − gr) × [1 − psr − psd + gs.psd + psr(1 − pac)],
T56 = gs(1 − gr).psr .pac,

T57 = gr × [1 − psr − psd + gs.psd + psr(1 − pac)],
T58 = gs.gr .psr .pac

T61 = 0, T62 = (1 − gs)(1 − gr).psd(1 − pf ),

T63 = 0, T64 = gr(1 − gs).psd(1 − pf ),

T65 = (1 − gr).pf × [1 − psr − psd ],
T66 = (1 − gr)[(1 − psr − psd)(1 − pf )

+ (psr + psd).pf + psr(1 − pf )

+ gs.psd(1 − pf )],
T67 = gr .pf (1 − psr − psd),

T68 = gr × [(1 − psd − psr)(1 − pf ) + (psr + psr)pf

+ psr(1 − pf ) + gs.psd(1 − pf )]

T71 = T72 = 0,

T73 = (1 − gs).psd(1 − prd),

T74 = (1 − gs)psr .pac(1 − prd),

T75 = (1 − gr)prd × [1 − psr − psd ], T76 = 0,

T77 = (1 − psr − psd)(1 − prd)

+ psr(1 − prd)(1 − pac) + gs.psd(1 − prd)

+ gr .prd(1 − psr − psd),

T78 = gs.psr .pac(1 − prd)

T81 = T82 = T83 = 0,

T84 = (1 − gs).psd(1 − prd − pf ), T85 = 0,

T86 = (1 − gr).prd(1 − psr − psd),

T87 = pf × [1 − psr − psd ],
T88 = (1 − psr − psd)(1 − prd − pf )

+ (psd + psr)(prd + pf ) + psr(1 − prd − pf )

+ gs.psd(1 − prd − pf )

+ gr .prd(1 − psd − psr)} (32)

Appendix C

The state transition matrix of the third proposed model, col-
lision adaptive method is presented. Again, to simplify the

notation (Tij ) is used instead of Tij (δ) to show the transition
probability of stationary strategy profile (δ).

T11 = (1 − gs)(1 − gr), T12 = 0, T13 = gr(1 − gs),

T14 = 0, T15 = gs(1 − gr),

T16 = 0, T17 = gs.gr , T18 = 0

T21 = (1 − gs)(1 − gr).pf ,

T22 = (1 − gs)(1 − gr)(1 − pf ),

T23 = gr(1 − gs).pf , T24 = gr(1 − gs)(1 − pf ),

T25 = gs(1 − gr).pf , T26 = gs(1 − gr)(1 − pf ),

T27 = gs.gr .pf , T28 = gs. gr (1 − pf )

T31 = (1 − gs)(1 − gr).prd ,

T32 = 0, T33 = (1 − gs)(1 − prd + gr .prd),

T34 = 0, T35 = gs(1 − gr).prd , T36 = 0,

T37 = gs(1 − prd + gr .prd), T38 = 0

T41 = 0, T42 = (1 − gs)(1 − gr).prd,

T43 = (1 − gs).pf ,

T44 = (1 − gs)(1 − prd − pf + gr .prd),

T45 = 0, T46 = gs(1 − gr).prd , T47 = gs.pf ,

T48 = gs(1 − prd − pf + gr .prd)

T51 = (1 − gs)(1 − gr).psd ,

T52 = (1 − gs)(1 − gr).psr .pac,

T53 = gr(1 − gs).psd , T54 = gr(1 − gs).psr .pac,

T55 = (1 − gr) × [1 − psr − psd + gs.psd + psr(1 − pac)],
T56 = gs(1 − gr).psr .pac,

T57 = gr × [1 − psr − psd + gs.psd + psr(1 − pac)]
T58 = gs.gr .psr .pac

T61 = 0, T62 = (1 − gs)(1 − gr).psd(1 − pf + pf .ssd),

T63 = 0, T64 = gr(1 − gs).psd(1 − pf + pf .ssd),

T65 = (1 − gr).pf × [1 − psr − psd

+ psr(1 − pe(r|d)) + psd .p(s̄, r|d),

T66 = (1 − gr)[(1 − psr − psd)(1 − pf )

+ psr .pf .pe(r|r) + psd .pf .p(s̄, r̄|d) + psr(1 − pf )

+ gs.psd(1 − pf + pf . sdd)],
T67 = gr .pf (1 − psr − psd + psr(1 − pe(r|r))

+ psd .p(s̄, r|d)),
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T68 = gr × [(1 − psd − psr)(1 − pf ) + psr .pf .pe(r|r)
+ psd .pf .p(s̄, r̄|d) + psr(1 − pf )

+ gs.psd(1 − pf + pf . ssd)]

T71 = T72 = 0,

T73 = (1 − gs).psd(1 − prd + prd .p(s, r̄|d),

T74 = (1 − gs)psr .pac(1 − prd)

T75 = (1 − gr)prd × [1 − psr − psd + psd .p(s̄, r|d)

+ psr(1 − pe(r|r))], T76 = 0,

T77 = (1 − psr − psd)(1 − prd) + psd .prd .p(s̄, r̄|d)

+ psr .prd .pe(r|r) + psr(1 − prd)(1 − pac)

+ gs.psd(1 − prd + prd .p(s, r̄|d))

+ gr .prd(1 − psr − psd + psd .p(s̄, r|d)

+ psr(1 − pe(r|r))),
T78 = gs.psr .pac(1 − prd)

T81 = T82 = T83 = 0,

T84 = (1 − gs).psd(1 − prd − pf + (prd + pf )p(s, r̄|d),

T85 = 0,

T86 = (1 − gr).prd(1 − psr − psd + psd .p(s̄, r|d)

+ psr(1 − pe(r|r))),
T87 = pf × [1 − psr − psd + psd .p(s̄, r|d)

+ psr(1 − pe(r|r))],
T88 = (1 − psr − psd)(1 − prd − pf )

+ psd(prd + pf ).p(s̄, r̄|d)

+ psr(1 − prd − pf ) + psr(prd + pf )pe(r|r)
+ gs.psd × [1 − prd − pf + (prd + pf ).p(s, r̄|d)]
+ gr .prd × [1 − psd − psr + psd .p(s̄, r|d)

+ psr(1 − pe(r|r))]} (33)
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