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Abstract
In this paper, a general cognitive radio system consisting of a set of users with different level of spectrum access including 
two primary transceivers and several types of secondary users is considered. It is assumed that two secondary users operate 
based on an underlay model at the same frequency bandwidth and at the same time as the primary users based on a multiple 
access broadcast channel bidirectional beamforming scheme. Other secondary users provide a relaying service to the pri-
mary users in exchange for the opportunity to send their messages towards their own destinations for a fixed portion of the 
communication cycle. In addition, it is assumed that some interferers are active during the communication cycle and cause 
interference for the network. Furthermore, it is assumed that only partial channel state information (CSI) between interferers 
and other nodes in the network is available. We provide a robust optimization method against imperfection on the interfer-
ers’ CSI to maximize the joint primary and secondary signal-to-interference-plus-noise-ratio with the assumption of limited 
available power at the secondary relays. An amplify-and-forward relaying scheme is deployed at the secondary relays and 
the optimal beamforming is obtained using second order convex programming method. The simulation results show the 
performance of the proposed beamforming method against the existence of interferers, and demonstrate the effectiveness of 
our robust method against uncertainty in knowledge of interferers’ CSIs.

Keywords  Amplify-and-forward relaying · Bidirectional relay networks · Cognitive radio · Imperfect channel state 
information · And robust optimization

1  Introduction

While the ever-increasing demand for wireless service 
makes the radio spectrum one of the most valuable and 
scarce resources for wireless communication, recent stud-
ies have shown that the spectrum is not efficiently utilized 
at some locations for certain times of the day [1]. Dynamic 
spectrum management is a new paradigm to manage the 
radio spectrum in a dynamic manner by allowing cognitive 
nodes to utilize the unused bandwidth [2]. Cognitive radio 
systems are usually composed of legacy spectrum owners, 
primary users (PUs), and cognitive devices seeking to access 
the PU’s spectrum, called secondary users (SUs).

Generally, dynamic spectrum technologies are broadly 
categorized into the two categories of common model and 
property-right model [3]. Unlike the common model for 
spectrum sharing, where the primary users are oblivious to 
the presence of SUs, in the property-right model, the PUs 
can willingly lease a portion of their spectrum to the SUs in 
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exchange for monetary benefits or physical compensations. 
This compensation could be in form of providing relaying 
service, energy harvesting or cooperative jamming for the 
PUs [4–7]. The property-right model for spectrum sharing 
in exchange for relaying service, also known as ’coopera-
tive spectrum leasing’ has received much attention in the 
last years, as it offers a win-win solution for both licensed 
and unlicensed users. The primary users can benefit from 
such spectrum leasing by enhancing their quality of ser-
vice (QoS), in particular when experiencing a poor channel 
condition, while the secondary users can obtain the chance 
of affordable spectrum access. Furthermore, the property-
right model can result in less energy consumption for the 
unlicensed users compared to the spectrum sensing models 
where they need to constantly sense the PUs’ spectrum look-
ing for spectrum holes.

In this work, we consider a general model of cognitive 
radio networks with co-existence of several types of SUs 
that operate in different modes. This network consists of 
two PU transceivers and two SU transceivers which desire 
to exchange their signals with the help of available second-
ary relays. It is assumed that two underlay SUs are allowed 
to share the radio spectrum with the PUs provided that 
their interference at the PUs’ receivers remains below an 
acceptable threshold. In addition to the two SUs operating 
in the underlay model, we consider the existence of multiple 
SUs that are interested in obtaining the spectrum access in 
exchange for providing relaying service for the PUs, based 
on the property-right model. Such model can limit the 
potential undesired interference that can be caused to the 
PUs, as well as the level of interference among the underlay 
SUs. Enabling a cooperative spectrum leasing to other SUs 
through property-right model can extend the number of SUs 
that can get the chance of spectrum access while benefit-
ing the PUs through the cooperative relaying. To further 
enhance the efficiency of radio spectrum utilization in this 
network, a two-way cooperative communication scenario is 
utilized in this network. In general, the two methods of time 
division broadcast (TDBC) and multiple access broadcast 
(MABC) are utilized in two-way communication scenarios 
[8–16]. In spite of TDBC scheme, where the transceivers 
send their signals in different time-slots, in MABC protocol 
both transceivers transmit their signals simultaneously. Since 
the proposed cooperative spectrum sharing mechanism is 
designed for cases when the quality of the direct link for 
the primary users is low, we consider an MABC scheme as 
it outperforms the TDBC scheme in such conditions [17].

One of the main concerns regarding the implementation 
of spectrum sharing solutions is combating the interference 
caused by simultaneous transmission of SUs with the PUs. 
Spectrum sharing networks are also vulnerable to the pres-
ence of unfriendly interferers that, despite the compliance of 
SUs, are not designated to respect the QoS requirement for 

the PUs. Unlike the intentional interferers (jammers), who 
intend to disturb the PUs’ communication, the unfriendly 
interferers degrade the PUs’ performance due to simultane-
ous transmission without PUs’ consent. A potential example 
of these interferers can be the sensing-based secondary users 
that may interfer with the PUs’ communication due to false 
detection of the PUs’ presence or synchronization imper-
fections. A cognitive radio network must account for such 
burdens, imposed by either intentional interferers or false 
detection errors in the sensing process. Therefore, we study 
a scenario for co-existence of two PUs, and two underlay 
SUs operating in a two-way relaying system with multiple 
secondary relays when multiple unfriendy interferers exist. 
When such interferers exist, the information related to their 
channel state information is not usually available to the cog-
nitive radio network. This is due to the fact that there is 
no cooperation between the unfriendly interferers and the 
networks’ centralized controller which can only obtain an 
imperfect knowledge of the CSI. Withal, this imperfection 
can be due to time delays or frequency offset between the 
reciprocal channels as well as inaccurate channel estimation 
[18]. In order to study the impact of the imperfect CSI of the 
interferers, we assume that the CSI of all other channels is 
perfectly known. This assumption can be easily justified due 
to the existing collaboration between the PUs and SUs and 
the secondary relays, where CSI could be directly fed back 
from node to node [3]. While no collaboration between the 
interferers and the primary and secondary users is imagined, 
other mechanisms can be used to estimate the CSI between 
them. For instance, this CSI can be measured by a band 
manager and be provided using finite bandwidth channels 
[19]. Eventually, this mechanism will cause inaccuracy in 
the estimated CSI which should be considered in the design 
of dynamic spectrum sharing systems.

To the best of our knowledge, this is the first work that 
considers the impact of multiple interferers and CSI uncer-
tainty on beamforming in the context of underlay cognitive 
radio systems which allows both PUs and SUs to operate in 
a two-way relaying mode. The existing relay nodes can also 
obtain the chance of spectrum access in exchange for pro-
viding an amplify-and forward cooperative service based on 
property-right spectrum sharing model. The main contribu-
tion of this work is to find the optimal beamforming vector 
which maximizes the QoS for both PU and SU transceivers 
in the above-mentioned system. The optimization problem is 
formulated as finding the beamform vector of the relay nodes 
that maximizes the QoS for PUs and SUs in the presence of 
unfriendly interferers with imperfect CSI. We consider the 
most general scenario with respect to uncertainty in inter-
ferers’ CSI knowledge, in which no information is available 
about the distribution of such CSIs or its stochastic param-
eters. In the proposed model, we only consider a limited 
bound on the uncertainty of the interferers’ CSI knowledge 
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and design a robust solution that accounts for the worst-case 
scenario.

Here we study two cases, where in the first one a complete 
knowledge of CSI of the channels between the interferers 
and the PUs, the SUs, and the secondary relays is available. 
The feasibility of the pristine optimization problem is exam-
ined and closed form equations for the feasibility conditions 
are derived for this case. The feasibility condition leads us to 
provide an upper bound on the optimal PUs’ SINR. After-
ward, a solution for the SINR optimization problem is pro-
posed. The bisection method is applied to obtain the optimal 
SINR which can be achieved by the PU and SU transceivers. 
In second case , we consider the impact of imperfect knowl-
edge of interferers’ CSI on the designed system and calcu-
late a robust solution for the SINR optimization problem. 
Another mathematical contribution of this work is to obtain 
the closed-form formulation of the worst-case scenario for 
each constraint instead of using linear matrix inequality 
(LMI) approaches with additional variables.

The rest of this paper is organized as follows: In Sect. 2, 
an overview of some related works in the literature is pre-
sented. Section 3 describes the system model. In Sect. 4, 
the SINR optimization problem is defined and solved with 
the assumption of perfect CSI knowledge for the unfriendly 
interferers. Subsequently, in Sect. 5, we show how to obtain 
the solution for the SINR optimization problem if only an 
imperfect knowledge of interferers’ CSI is available. Numer-
ical results are provided in Sect. 6; and Sect. 7 draws the 
concluding remarks.

2 � Related Works

In general, cooperative communication techniques have 
proven to significantly enhance the performance of wire-
less communication systems in terms of reducing the energy 
consumption, enhancing the transmission rate, and extend-
ing the connectivity, to only name a few [20–22]. A grow-
ing body of literature has investigated different factors that 
play a key role in optimizing the performance of cooperative 
relaying systems including studying the impact of power 
allocation, relay selection, relaying modes and time alloca-
tion strategies among direct and cooperative communication 
[23–25]. Furthermore, several joint optimization techniques 
have been proposed with the goal of improving the network 
performance when looking at the combined effect of these 
factors [26–30]. The authors in [27] and [28] aimed at gen-
eralizing the common assumption of equal time allocation 
between the source and relay nodes and designed optimum 
joint power and time allocation mechanisms to minimize 
the outage probability when only the statistical knowledge 
of CSI is available.

Motivated by the results of cooperative relaying in wire-
less networks, the SUs have been deployed as relays in cog-
nitive radio networks to enhance the QoS of PUs, particu-
larly when the PUs experience a poor channel condition due 
to shadowing or sparse network coverage [4, 7, 31]. Coop-
erative spectrum leasing solutions have recently received a 
considerable attention in cognitive radio networks as they 
offer a coordination mechanism between the licensed and 
licensed users for dynamic spectrum access. In this meth-
ods, the secondary users can obtain the chance of spectrum 
access in exchange for providing cooperative services for the 
spectrum owners when they face poor channel conditions 
[4–7, 32]. In [7], a model for cooperative spectrum leasing 
among a primary user and a network of Ad-Hoc second-
ary users is presented in which the primary user can decide 
whether to lease a portion of its spectrum access time to the 
secondary users noting its channel quality. Moreover, a non-
cooperative game theoretic model is defined to determine 
the optimum power allocation of the secondary users when 
they compete with one another to enhance their transmis-
sion rate over the assigned time for SUs’ transmission. In 
[31], the authors studied the cooperative spectrum leasing in 
heterogeneous Ad-Hoc networks and calculated the neces-
sary condition on the channel quality between the primary 
user and the SUs to encourage primary users to participate 
in leasing. A cooperation protocol is proposed to maximize 
the transmission rate of secondary cognitive users for the 
given amount of spectrum released by the PU and their given 
power budget, where an equal time allocation is assigned for 
transmission of the primary and secondary users. Similar to 
any cooperative communication networks, the performance 
of the cooperative spectrum leasing techniques depend on 
several factors such as relay selection, deployed relaying 
methods, availability of global CSI, reliability of the sec-
ondary users, and presence of jamming or interference.

Different relaying strategies, including decode and for-
ward (DF), compress and forward (CF), and amplify and for-
ward (AF) are investigated in literature [33]. The AF relay-
ing mode has been widely utilized in practical applications 
due to its simplicity, as the relay nodes are only required to 
amplify and phase steer, i.e., beamform, the received signal 
and rebroadcast it. Despite the DF and CF coding relaying 
techniques, where the relay nodes need to decode and re-
encode the transmitter’s message; in AF relaying mode, the 
relay nodes only amplify and forward the received signal. 
Therefore, AF involves lower complexity and are an appro-
priate relaying solution for cooperative spectrum sharing 
applications as selected in this paper since the SUs do not 
require to have the knowledge of PU’s codebooks for relay-
ing [31, 34].

While in cooperative spectrum leasing models, it is 
assumed that the secondary relays follow the agreement 
among the users to only transmit their messages in their 
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allocated time slots [4, 5, 7, 32, 35, 36], it is likely that these 
users will deviate from this agreement and cause harmful 
interference for the spectrum owners. Such undesired inter-
ference can be also caused by other unlicensed users in the 
proximity of the primary users working based on other spec-
trum sharing schemes such as spectrum sensing. In these 
conditions, the information about the channel conditions 
among the interferers and the PUs is often unavailable due 
to the lack of coordination among these users. This calls for 
new models to provide robust solutions to combat such unde-
sired interference when minimum amount of information is 
accessible about the interferers. In general, t hree different 
approaches are known to handle the difficulties imposed by 
uncertainty in a data set, which in our case is imperfection 
in the interferers’ CSI, [37]: 1) stochastic programming (SP), 
2) robust mathematical programming (RMP), and 3) robust 
counterpart (RC) approach (worst-case scenario). The SP is 
limited to the problems where the uncertainty is stochastic 
in nature, i. e.  can be modeled as random variables. In this 
approach, the system is robustly designed in such a way that 
the average of network constraints including interference 
level or minimum QoS thresholds are in a desired range 
[19, 27, 28, 38–41]. One may think of two practical draw-
backs for this approach. First, we need to be able to iden-
tify the underlying probability distributions of uncertainty 
in the data set. The other vital pragmatic drawback of this 
approach is that it is very likely that the constraints on the 
average will be violated. Similarly, in the RMP approach, 
the violation of the constraints can occur but with a pen-
alty in the objective [42]. Hence, this cannot be a proper 
option in software defined radio (SDR) networks, where the 
constraints on PUs’ QoS must be met accurately. Finally, 
RC approaches, first introduced by Ben-Tal and Nemrovski 
[37], comply with the specified constraints in a problem by 
considering a worst-case scenario. To be more precise, a 

bounded region is assumed for the uncertainty on the vari-
ables that are not perfectly known, while the objective of RC 
method is to find a robust solution that is feasible over the 
whole uncertainty region. Commonly, a mathematical con-
cept known as the linear matrix inequality (LMI) along with 
defining new variables is used to solve an RC problem such 
as robust optimization problems in underlay SDR systems 
with uncertainty in CSI [18, 43–45].

Notations: A summary of the notation is provided in 
Table 1.

3 � System Model

In this section, the system and channel models considered 
in the paper are briefly outlined. A SDR network consists 
of two primary transceivers ( PU1 and PU2 ) and two sec-
ondary transceivers ( SU1 and SU2 ) is considered. The SUs 
are in a soft lease contract with the PUs, meaning that they 
obtained the permission to simultaneously access the PUs’ 
spectrum based on an agreement [46]. Due to a low quality 
of the direct link between PU1 and PU2 , the primary network 
is willing to employ several secondary relays for the sake 
of cooperative relaying advantages. An MABC two-way 
cooperative scenario is designed, where two PU transceiv-
ers, as well as two secondary transceivers, desire to exchange 
their signals with the help of Nr relays, simultaneously. As a 
reward, the relays, called R1,R2,… ,RNr

 , will obtain access 
to the PU’s spectrum during each communication cycle for 
a fixed portion of the time slot, as depicted in Fig. 1. It is 
also assumed that the network is affected by NI unfriendly 
interferers {I1, I2,… , INI

} and that all wireless channels are 
reciprocal and frequency flat.

We assume that, in a given time-slot, the antennas can only 
transmit or receive a signal but not both at the same time, 

Table 1   Notation Notation Description

Uppercase boldface letters Matrices
Lowercase boldface letters Vectors
(.)∗ Conjugate of the complex scalar
(.)T Transpose of a vector or matrix
(.)H Hermitian (conjugate) transpose of a vector or matrix
‖�‖ Euclidean norm ( ‖.‖2 ) of the vector �
�max{�} Maximum eigenvalue of the matrix �
�i,j or �i The {i, j}th or {i}th element of matrix � or vector �
� = diag(�) Diagonal matrix with �i,i = �i

� = diag(�) Vertical vector with �i = �i,i

blkdiag(�,�) Diagonal matrix with the elements of the vectors � and � in order
� ∙ �

∑
i

∑
j �i,j�i,j

ī for i = 1, 2 All except i
�N,j N × 1 Vector with jth element 1 and the rest 0
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i.e.  all antennas operate in half-duplex mode. A centralized 
controller is considered to provide the perfect CSI of the SDR 
system as well as to calculate the optimum beamforming vec-
tor of the relays, an assumption which has been considered in 
similar reported works [9, 17, 44, 47]. The parameters of the 
system model are summarized in Table 2.

We assume that the Nr × 1 complex channel coefficient vec-
tors �Pi

 , i = 1, 2 , are defined as:

where fPiRj
 is the instant reciprocal flat fading channel coef-

ficient between PUi and the secondary relay Rj for i = 1, 2 
and j = 1, 2,… ,Nr . The Nr × 1 complex channel coefficient 
vectors �Si , i = 1, 2 , are denoted by:

(1)�Pi
=
[
fPiR1

, fPiR2
,… , fPiRNr

]T
,

where fSiRj
 s, i = 1, 2 and j = 1, 2,… ,Nr are the instant recip-

rocal flat fading channel coefficients between the transceiver 
SUi and the secondary relay Rj.

Moreover, we assume that the NI × 1 complex channel 
coefficient vectors between the interferers and PUi and SUi , 
i = 1, 2 , are defined as: 

(2)�Si
=
[
fSiR1

, fSiR2
,… , fSiRNr

]T
,

(3a)�Pi
=
[
hPiI1

, hPiI2
,… , hPiINI

]T

(3b)�Si
=
[
hSiI1 , hSiI2 ,… , hSiINI

]T
,

Fig. 1   a MABC phase I in which both the PUs and SUs transmit their 
signals, simultaneously, and the relays receive these signals in pres-
ence of interferers. b MABC Phase II, in which the relays broadcast 
an amplified and phase shifted version of the signals they received in 
Phase I. c As a reward, the relays transmit their signal to their own 

destinations in a portion of this time-slot. T
1
 refers to a portion of time 

slot allocated to transmission of the PUs and the SUs, while T
2
 is the 

portion of the time slot allocated to the relays’ transmission as an 
award for their cooperative services

Table 2   Summary of 
parameters

Parameters Description

PUi i’th Primary user
SUi i’th Secondary users
�Pi

Channel coefficient vectors between PUi and relays
�Si

Channel coefficient vectors between SUi and relays
�Pi

Channel coefficient vectors between the interferers and PUi

�Si
Channel coefficient vectors between the interferers and SUi

�Il
Channel coefficient vectors between the interferers and l’th relay

� Received vector signal at relays
� Beamformer vector
� Transmitted signal by relays
yPi

Received signal by PUi

ySi Received signal by SUi

SINRPi
SINR at PUi

SINRSi
SINR at SUi
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 where hPiIl
 and hSiIl denote the instant reciprocal flat fading 

channel coefficients between the interferer Il , l = 1,… ,NI , 
and PUi and SUi , i = 1, 2 , respectively. Also, the Nr × 1 
complex channel coefficient vectors between the secondary 
relays and the interferer Il , l = 1, 2,… ,NI , are defined as:

where hRjIl
 s, j = 1, 2,… ,Nr and l = 1, 2,… ,NI , are the 

instant reciprocal flat fading channel coefficients between 
the secondary relay Rj and the interferer Il . The channel coef-
ficients in the system model are summarized in Fig. 2.

The complete knowledge of CSI between the interfer-
ers and the SDR users is not available and only imperfect 
CSI estimations of channels between the PUs and the inter-
ferers, the SUs and interferers, and the secondary relays 
and the the interferers denoted by �̂Pi

 , �̂Si , �̂Il , i = 1, 2 and 
l = 1, 2,… ,NI , respectively is provided by the centralized 
controller. Mathematically, this assumption can be written 
as [44]: 

 where ∇�Pi
 , ∇�Si and ∇�Il are the bounded uncertainty CSI 

vectors and �Pi
 , �Si , and �l denote the maximum value of 

CSI estimation error. The key advantage of this model is 
that it does not rely on the knowledge of distribution of the 
estimation errors rather it only requires the maximum value 
of these errors [44].

In MABC protocol, the messages are exchanged in two 
time slots, where in the first one, the primary and secondary 
transceivers send their messages, xPi

 and xSi , i = 1, 2 , 

(4)�Il
=
[
hR1Il

, hR2Il
,… , hRNr

Il

]T
,

(5a)�Pi
= �̂Pi

+ ∇�Pi
, ‖∇�Pi

‖ ≤ 𝜖Pi

(5b)�Si
= �̂Si

+ ∇�Si , ‖∇�Si‖ ≤ 𝜖Si

(5c)�Il
= �̂Il

+ ∇�Il , ‖∇�Il‖ ≤ 𝜖l

simultaneously. The relays receive a linear combination of 
all primary and secondary transmitted signals as well as the 
external interference signals x(1)

Il
 , l = 1, 2,… ,NI . Each relay 

rebroadcasts a weighted version of the received signal (AF 
relaying) in the second time-slot. Each transceiver receives 
a linear combination of its own signal, the other primary or 
secondary transceivers and the external interference signals 
x
(2)

Il
 , l = 1, 2,… ,NI , in this time-slot. Without loss of gener-

ality, we assume that �{|xPi
|2} = �{|xSi |

2} = �{|x(i)
Il
|2} = 1 

for all i = 1, 2 and l = 1,… ,NI . Also, we assume that all 
messages from different sources or in different time-slots are 
independent. Either primary or secondary transceivers may 
extract the desired signal considering the full knowledge of 
the self-interference portion of the signal.

The Nr × 1 vector of the received signal at the secondary 
relay network, in the first time-slot, can be written as:

where PPi
 , PSi

 and PIl
 , i = 1, 2 and l = 1, 2,… ,NI denote the 

transmit power of primary transceivers, secondary transceiv-
ers and interferers, respectively. The Nr × 1 vector 
� ∼ (�, �

2�Nr
) represents the white Gaussian noise at the 

relays. Each relay multiplies its received signal by a complex 
number w∗

j
 , j = 1, 2,… ,Nr and rebroadcasts it in the second 

time-slot. By defining the Nr × 1 beamforming vector 
� = [w1,w2,… ,wNr

]T , the Nr × 1 transmitted vector at the 
relays can be written as:

The individual power consumption at each relay can be writ-
ten as:

for j = 1,… ,Nr . After some mathematical manipulation 
and by using the fact that �� = �� if � = diag(�) and 
� = diag(�) for arbitrary same-size vectors � and � , (8) is 
simplified as:

where

(6)

� =

2∑

i=1

√
PPi

�Pi
xPi

+

2∑

i=1

√
PSi

�SiR
xSi +

NI∑

l=1

√
PIl

�Il
x
(1)

Il
+ �,

(7)

� =�
H
�

=

2∑

i=1

√
P
Pi
�

H
�
Pi
x
Pi
+

2∑

i=1

√
P
Si
�

H
�
Si
x
Si

+

NI∑

l=1

√
P
Il
�

H
�
Il
x
(1)

Il
+�

H�.

(8)

Prj
=�

{
|�{j}|2

}
=
(
�

H
�{��H}�

)
{j,j}

=

(
�

H

{
2∑

i=1

PPj
�PiR

�
H
PiR

+

2∑

i=1

PSi
�SiR

�
H
SiR

+

NI∑

l=1

PIl
�Il

�
H
Il
+ �

2
�Nr

}
�

)

{j,j}

,

(9)Prj
= �rj

|wj|2,Fig. 2   Channel coefficient vectors between interferers and SU
i
 

( �
Si
 ), interferers and PU

i
 ( �

Pi
 ), interferer I

l
 and relays ( �

Il
 ), SU

i
 and 

relays(�
Si
 ), and PU

i
 and relays(�

Si
)
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for j = 1,… ,Nr . The received signal at PUi , i = 1, 2 , in the 
second time-slot can be written as:

where �Pi
∼ (0, �

2) is the white Gaussian noise at the 
PUi , � denotes the beamforming vector. Notation � repre-
sents a diagonal matrix with �i,i =�

 as previously defined in 
Table 1. The received signal at SUi , i = 1, 2 , in the second 
time-slot can be written as:

where �Si ∼ (0, �
2) is the white Gaussian noise at the SUi . 

It is assumed that each primary and secondary transceiver 
can compute and subtract the self-interference part of the 
received signal. Therefore, the residual received signals at 
the primary transceiver can be written as:

Also the residual received signals at the secondary transceiv-
ers can be written as:

Let us define

for i, j = 1, 2 , 

(10)

�rj
=

2∑

i=1

PPi
|(�PiR){j}|

2 +

2∑

i=1

PSi
|(�SiR){j}|

2 +

NI∑

l=1

PIl
|(�Il

){j}|2 + �
2
,

(11)

yPi =

2∑

k=1

√
PPk

�
H
�Pi

�Pk
xPk +

2∑

k=1

√
PSk

�
H
�Pi

�Sk
xSk

+

NI∑

l=1

√
PIl

�
H
�Pi

�Il
x
(1)

Il
+

NI∑

l=1

√
PIl

hPiIl x
(2)

Il
+ �

H
�Pi

� + �Pi
,

(12)
ySi =

2∑

k=1

√
PPk

�
H
�Si

�Pk
xPk +

2∑

k=1

√
PSk

�
H
�Si

�Sk
xSk

+

NI∑

l=1

√
PIl

�
H
�Si

�Il
x
(1)

Il
+

NI∑

l=1

√
PIl

hSiIl x
(2)

Il
+ �

H
�Si

� + �Si
,

(13)

ỹPj
=
√

PPj̄
�

H
�Pj

�Pj̄R
xPj̄

�����������������������

Desired Signal

+

2∑

i=1

√
PSi

�
H
�Pj

�Si
xSi

+

NI∑

l=1

√
PIl

�
H
�Pj

�Il
x
(1)

Il
+

NI∑

l=1

√
PIl

hPjIl
x
(2)

Il
+ �

H
�Pj

� + 𝜈Pj
, j = 1, 2.

(14)

ỹSj =

2∑

i=1

√
PPi

�
H
�Sj

�Pi
xPi

+
√

PSj̄
�

H
�Sj

�Sj̄R
xSj̄

���������������������

Desired Signal

+

NI∑

l=1

√
PIl

�
H
�Sj

�Il
x
(1)

Il
+

NI∑

l=1

√
PIl

hSjIl x
(2)

Il
+ �

H
�Sj

� + 𝜈Sj
, j = 1, 2.

(15)

�PiPj
= �Pi

�Pj
, �SiSj

= �Si
�Sj

and �SiPj
= �Si

�Pj
,

(16a)
�Pj

=

2∑

i=1

PSi
�SiPj

�
H

SiPj
+ �

2
�Pj

�
H

Pj
+

NI∑

l=1

PIl
�Pj

�Il
�
H

Il
�
H

Pj
, j = 1, 2

 and

By using the above definitions and the residual signals (13) 
and (14), the SINRs at the primary and secondary transceiv-
ers can be written as: 

 In the next section, the SINR optimization problem is 
discussed.

4 � SINR’s Optimization with Perfect CSI

The goal of this section is to find an optimal weight vector, 
� such that the SINRs in the primary and secondary network 
is maximized. This optimization problem can be represented 
as a Max–Min problem with the sense of maximizing the 
minimum value among primary and secondary’s SINRs. 
Despite the majority of reported works, in which the optimal 
beamforming vector is found to guarantee a minimum QoS 
for only the PUs, here we provide a solution to assure the 
required QoS for both PUs and SUs. In fact, the SUs have 
already obtained access to the spectrum by reason of their 
soft-lease and deserve to have a minimum QoS. However, 
considering the priority of the PUs as the spectrum own-
ers, a design parameter � ≥ 1 is defined as an expected ratio 
between SINRs for the PUs and SUs. Another assumption 
in this optimization problem is that the available individual 
power at the relays is limited. Therefore, the SINR maximi-
zation problem can be written as:

 By defining an auxiliary real variable 𝛾 > 0 , the Max–Min 
problem (19) can be rewritten as:

(16b)

�Sj
=

2∑

i=1

PPi
�SjPi

�
H

SjPi
+ �

2
�Sj

�
H

Sj
+

NI∑

l=1

PIl
�Sj

�Il
�
H

Il
�
H

Sj
, j = 1, 2.

(17)�Pi
=

NI∑

l=1

PIl
|hPiIl

|2, �Si =
NI∑

l=1

PIl
|hSiIl |

2, i = 1, 2.

(18a)SINRPi
=

PPī
�H�P1P2

�
H
P1P2

�

�H�Pi
� + 𝜁Pi

+ 𝜎2
, i = 1, 2

(18b)SINRSi
=

PSī
�H�S1S2

�
H
S1S2

�

�H�Si
� + 𝜁Si

+ 𝜎2
, i = 1, 2.

(19)max
�

min
{
{SINRPi

}i=1,2,�{SINRSi
}i=1,2

}

(19a)Subject To: Prj
≤ Pmax

l
, l = 1,… ,Nr.

(20)max
�,𝛾>0

𝛾

(20a)Subject To: SINRPi
≥ � , i = 1, 2
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 By using (9) and (18), the optimization problem (20) can 
be rewritten as:

 In the following subsection we investigate the feasibility 
condition(s) of the optimization problem (21).

4.1 � Feasibility Condition

Lemma 1  Let � denote a Positive Definite (PD) matrix, � 
represent a vector of the same length as size of � , t and c are 
positive scalars and � be the vector variable with the same 
length as � , then �H�−1

� − t ≥ 0 is a feasibility condition for 
the following constraint:

Proof  The constraint (22) can be rearranged and be written 
as:

An optimization becomes infeasible, i. e.  no feasible point 
for � were found, if the core matrix ��H − t� was negative 
semi-definite. Also, if this matrix was not negative semi-def-
inite, a vector �p exists such a way that �H

p
(��H − t�)�p > 0 , 

thus one may scale up �p in a way that the inequality (23) is 
satisfied. Therefore, (23) is feasible if and only if the matrix 
��H − t� was not negative semi-definite. As a result of the 
above discussion, the infeasibility condition can be written 
as:

Since the matrix � is positive definite, the constraint (24) is 
equivalent to �

1

2 (�
−1

2 ��H�
−1

2 − t�)�
1

2 ⪯ 0 . Also, the matrix 
�

1

2 is positive definite, we can rewrite the above men-
tioned condition as �

−1

2 ��H�
−1

2 − t� ⪯ 0 , or equivalently 

(20b)�SINRSi
≥ � , i = 1, 2

(20c)Prj
≤ Pmax

j
, j = 1,… ,Nr.

(21)max
�,𝛾>0

𝛾

(21a)Subject To:
PPī

�H�P1P2
�
H
P1P2

�

�H�Pi
� + 𝜁Pi

+ 𝜎2
≥ 𝛾 , i = 1, 2

(21b)𝜇

PSī
�H�S1S2

�
H
S1S2

�

�H�Si
� + 𝜁Si

+ 𝜎2
≥ 𝛾 , i = 1, 2

(21c)�rj

|||�Nr ,j
T
�
|||
2

≤ Pmax
j

, j = 1,… ,Nr.

(22)�H��H�

�H�� + c
≥ t.

(23)�
H(��H − t�)� ≥ ct

(24)��
H − t� ⪯ 0.

𝜆max{�
−1

2 ��H�
−1

2 − t�} > 0 . The matrix �
−1

2 ��H�
−1

2  is a rank 
one matrix. Hence, for t > 0 , all of the eigenvalues of the 
matrix �

−1

2 ��H�
−1

2 − t� are equal to zero except �H�−1
� − t . 

Therefore, the feasibility condition can be summarized as 
�H�−1

� − t > 0 . 	�  □

Using Lemma 1, the feasibility conditions for the individual 
constraints in optimization problem (21) can be written as: 

 Therefore, by using the feasibility conditions (25), an upper 
bound condition for � can be written as:

The upper bound value (26) of � does not guarantee the 
feasibility of the optimization problem (21), since it was 
obtained from individual constraints. In other word, the 
union of the feasibility regions associated with each con-
straint in (21) may provide additional limitation on � value. 
Therefore, we provide a method to find the optimal solution 
of � in the next subsection.

4.2 � Optimal SINR Solution

In this subsection, a feasibility check bisection method is 
used to find the optimal value of � . In this method, the opti-
mization problem (21) will turn into the following feasibility 
check problem for a given value of �:

 The idea is to find the optimal value of � , i.e., �opt , we do 
not need to calculate the optimum vector � . To do so, we 
start from an initial interval (� low

0
, �

up

0
) of �opt where �up

0
 is 

the initial upper bound of �opt , which is derived in (26) and 
�
low
0

 is the initial lower bound of �opt , which is zero. Then, 
at step n, by choosing � =

1

2
(� low

n−1
+ �

up

n−1
) and checking the 

(25a)PPī
�
H
P1P2

�Pi

−1
�P1P2

− 𝛾 > 0, i = 1, 2

(25b)𝜇PSī
�
H
S1S2

�Si

−1
�S1S2

− 𝛾 > 0, i = 1, 2.

(26)𝛾
up =min

{{
P
P
ī
�
H

P1P2

�
Pi

−1
�
P1P2

}

i=1,2
, 𝜇

{
P
S
ī
�
H

S1S2
�

Si

−1
�
S1S2

}

i=1,2

}
.

(27)Find �

(27a)
PPī

�H�P1P2
�
H
P1P2

�

�H�Pi
� + 𝜁Pi

+ 𝜎2
≥ 𝛾 , i = 1, 2

(27b)𝜇

PSī
�H�S1S2

�
H
S1S2

�

�H�Si
� + 𝜁Si

+ 𝜎2
≥ 𝛾 , i = 1, 2

(27c)�rj
|�Nr ,j

T
�|2 ≤ Pmax

j
, j = 1,… ,Nr.
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feasibility of problem (27), the solution interval of �opt will 
be updated as:

This bisection method will be continued until a small enough 
range of � for the solution interval of �opt is achieved. It is 
worth mentioning that the bisection method increases the 
complexity order of our method by a factor of log2

(
�
up

�

)
 . In 

order to solve the feasibility check problem (27), we rear-
range the constraints in a quadratic format:

 It is observed that if � is in the feasible region of (29), then 
for any arbitrary real number � , the vector �̃ = ej𝜃� is also 
in the feasible region. Therefore, without loss of generality, 
we can assume that �H

P1P2
� (or �H

S1S2
� ) is a non-negative real 

number. By applying this assumption, the constraints (29a) 
are turned to: 

 where (30a) constraints are complex second order (Lorentz) 
cone (SOC) [48]. However, as an indirect conclusion from 
Lemma 1, the matrices 𝜇PSī

�S1S2
�
H
S1S2

− 𝛾�Si
 , i = 1, 2 , are 

not positive definite and therefore the constraints (29b) do 
not represent convex regions. In order to make these con-
straints set convex, we define an auxiliary matrix variable 
� = ��H . In a quadratic optimization problem, we are 
allowed to use the matrix variable � by adding the following 
counterpart constraints [49]:

(28)

(� low
n

, �up
n
) =

⎧
⎪
⎨
⎪
⎩

�
1

2
(� low

n−1
+ �

up

n−1
), �

up

n−1

�
, if (27) feasible

�
�
low
n−1

,
1

2
(� low

n−1
+ �

up

n−1
)
�
, otherwise.

(29)Find �

(29a)�
H(PPī

�P1P2
�
H
P1P2

− 𝛾�Pi
)� ≥ 𝛾(𝜁Pi

+ 𝜎
2), i = 1, 2

(29b)�
H(𝜇PSī

�S1S2
�
H
S1S2

− 𝛾�Si
)� ≥ 𝛾(𝜁Si + 𝜎

2), i = 1, 2

(29c)�rj
|�Nr ,j

T
�|2 ≤ Pmax

j
, j = 1,… ,Nr.

(30a)

√
PPī

𝛾
�P1P2

H
� ≥

√
�H�Pi

� + 𝜁Pi
+ 𝜎2, i = 1, 2

(30b)ℜ

{
�
H
P1P2

�

}
≥ 0, ℑ

{
�
H
P1P2

�

}
= 0,

and rank(�) = 1 . The positive semidefinite (PSD) condi-
tion (31) represents a convex region for variables � and � 
[48]. Although, the rank one condition does not represent 
a convex region; however, one may ignore the rank con-
straint of � and solve the relaxed optimization problem. It 
is shown that if a relaxed problem (non ranked restricted) 
which is linear with respect to � , was feasible then the rank-
one restricted version of that problem is also feasible [49]. 
Therefore, we remove the rank constraint from our optimiza-
tion problem.

By using the matrix variable � , equation (29b) can be 
converted to: 

 for j = 1, 2 . In order to reduce the computational complex-
ity order of the problem, the following lemma can be used to 
convert the quadratic region (32) into a SOC region.

Lemma 2  For a vector � and positive real numbers � ≥ 0 
and � ≥ 0 , the inequality �H� ≤ �� holds if and only if the 

inequality 
‖‖‖‖‖

[
� − �

2�

]‖‖‖‖‖
≤ � + � holds [49].

Proof  The lemma will be simply proved by noting that 
�����

�
� − �

2�

������

2

= (� − �)2 + 4‖�‖2 . 	�  □

By applying Lemma 2 for the values of � = 1 , 
𝛽 =

𝜇

𝛾
PSī

�S1S2
�
H
S1S2

∙� − 𝜁Si
− 𝜎

2 and � = �Si

1

2� , the con-

straints (32) will turned into the following SOC 
constraints: 

 By using (30), (31) and (33), the relaxed version of the 
problem (29) can be written as:

(31)� − ��
H ⪰ 0

(32a)
𝛾�

H
�Si

� − 𝜇PSī
�S1S2

�
H
S1S2

∙� + 𝛾(𝜁Si + 𝜎
2) ≤ 0 i = 1, 2

(32b)
ℜ

{(
�S1S2

�
H
S1S2

)
∙�

}
≥ 0, ℑ

{(
�S1S2

�
H
S1S2

)
∙�

}
= 0

(33a)

‖‖‖‖‖‖

[
1 −

𝜇PS
ī

𝛾
�
S
1
S
2
�
H

S
1
S
2

∙� + 𝜁
Si
+ 𝜎

2

2�
Si

1

2�

]‖‖‖‖‖‖

≤ 1 +
𝜇P

S
ī

𝛾
�
S
1
S
2
�
H

S
1
S
2

∙� − 𝜁
Si
− 𝜎

2
, i = 1, 2

(33b)
ℜ

{(
�
S
1
S
2
�
H

S
1
S
2

)
∙�

}
≥ 0, ℑ

{(
�
S
1
S
2
�
H

S
1
S
2

)
∙�

}
= 0
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The feasibility check problem can be solved by employing 
Second Order Cone Programming (SOCP) using cvx soft-
ware [50]. It is worth emphasizing that no rank deduction 
algorithm is required to obtain a rank one solution for � . In 
the next section, we define and solve the QoS’s maximiza-
tion problem when any imperfect interference CSI is avail-
able to the central controller.

5 � SINR’s Optimization with Imperfect 
Interferers CSI

In session 4, the problem of joint optimizing the SINR of 
the PUs and SUs considering the perfect knowledge of the 
external interferences is discussed. However, the assumption 
of perfect knowledge on the unfriendly interferers’ CSI is 
not realistic in practical applications. We provide an optimi-
zation problem which is robust against all uncertainties in 
interferers’ CSI. Let �  denote the set of uncertainty regions 
of all interferers’ CSI. By using (5) we have:

By applying (35), the robust version of the optimization 
problem (20) can be written as:

The robust optimization problem (36) suggests common 
� for all constraints. However, one may think of a sepa-
rate uncertainty array � for every set of constraints. In fact, 

(34)

Find �,�

√
𝛾�H�

Pi
� + 𝜁

p

i
+ 𝜎2 ≤

√
P
Pī

𝛾
�
H

P1P2

�, i = 1, 2

ℜ

{
�
H

P1P2

�

}
≥ 0 ℑ

{
�
H

P1P2

�

}
= 0

‖‖‖‖‖‖

[
1 −

𝜇

𝛾
P
Sī
�
S1S2

�
H

S1S2
∙� + 𝜁

Si
+ 𝜎

2

2�
Si

1

2�

]‖‖‖‖‖‖
≤ 1 +

𝜇

𝛾
P
Sī
�
S1S2

�
H

S1S2
∙� − 𝜁

Si
− 𝜎

2, i = 1, 2

ℜ

{(
�
S1S2

�
H

S1S2

)
∙�

}
≥ 0, ℑ

{(
�
S1S2

�
H

S1S2

)
∙�

}
= 0

√
𝜉
rj

||�Nr ,j
T
�|| ≤

√
P
max

j
j = 1,… ,N

r

� − ��
H ⪰ 0.

(35)

� =
�
∀
�
{∇�

Pi
}
i=1,2, {∇�Si}i=1,2, {∇�Il}l=1,…,NI

����‖∇�Pi
‖

≤ �
Pi
&‖∇�

Si
‖ ≤ �

Si
&‖∇�

Il
‖ ≤ �

l

�

(36)

max
�,𝛾>0

𝛾

Subject To: SINRPi
(𝜓) ≥ 𝛾 , ∀𝜓 ∈ 𝛹 i = 1, 2

𝜇SINRSi
(𝜓) ≥ 𝛾 , ∀𝜓 ∈ 𝛹 i = 1, 2

Prj
(𝜓) ≤ Pmax

j
, ∀𝜓 ∈ 𝛹 j = 1,… ,Nr.

Theorem 2.1 of [37] allows us to write a counterpart robust 
optimization problem of (36) as:

or equivalently:

 In the next subsection, a closed-form format for all con-
straints of the optimization problem (38) is provided.

5.1 � Closed‑Form Worst Case Imperfection

By using the definitions (5), (16) and (17), the constraints 
(38a-b) can be rewritten as: 

 where �I = [PI1
,PI1

,… ,PINI
]T , and 

Also, by using (5) and (9) the constraint (38c) can be 
written as:

(37)

max
�,𝛾>0

𝛾

Subject To: SINR
Pi
(𝜓

Pi
) ≥ 𝛾 , ∀𝜓

Pi
∈ 𝛹 i = 1, 2

𝜇SINR
Si
(𝜓

Si
) ≥ 𝛾 , ∀𝜓

Si
∈ 𝛹 i = 1, 2

P
rj
(𝜓

rj
) ≤ P

max

j
, ∀𝜓

rj
∈ 𝛹 j = 1,… ,N

r
,

(38)max
�,𝛾>0

𝛾

(38a)Subject To: min
∀�Pi

∈�
SINRPi

(�Pi
) ≥ � , i = 1, 2

(38b)� min
∀�Si

∈�
SINRSi

(�Si
) ≥ � , i = 1, 2

(38c)max
∀�rj

∈�
Prj

(�rj
) ≤ Pmax

j
, j = 1,… ,Nr.

(39a)

𝛾 max
∀𝜓

Pi
∈𝛹

�
N
I�

l=1

P
I
l
‖�H

�
P
i
(�̂

I
l
+ ∇�

I
l
)‖2 + ‖(�̂

P
i
+ ∇�

P
i
)H�

1

2

I
‖2
�

≤ �
H

�
P
P
ī
�
P1P2

�
H

P1P2

− 𝛾�
P
i

�
� − 𝛾𝜎

2

(39b)

𝛾 max
∀𝜓Si

∈𝛹

�
NI�

l=1

P
Il
‖�H

�
Si
(�̂

Il
+ ∇�

Il
)‖2 + ‖(�̂

Si
+ ∇�

Si
)H�

1

2

I
‖2
�

≤ �
H

�
𝜇P

Sī
�
S1S2

�
H

S1S2
− 𝛾�

Si

�
� − 𝛾𝜎

2

(40a)�Pi
=

2∑

j=1

PSj
�SjPi

�
H
SjPi

+ �
2
�Pi

�
H
Pi
, i = 1, 2

(40b)�Si
=

2∑

j=1

PPj
�SiPj

�
H
SiPj

+ �
2
�Si

�
H
Si
, i = 1, 2.
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where,

In order to write the constraints (39) and (41) in a closed for-
mat, we use two lemmas on norm vector inequalities. First:

Lemma 3  Let � and � denote complex vectors. If � is a vector 
whose norm is bounded by constant � , i. e.  ‖�‖ ≤ � , then 
‖�H(� + �)‖ ≤ ��H�� + �‖�‖ and the equality holds if and 
only if � =

�

‖�‖�e
j∠�H�.

Proof  The proof is provided in [44] by using triangle ine-
quality theorem and Cauchy-Schwarz inequality. 	�  □

By applying Lemma,3 we have: 

 Next,

Lemma 4  Let � denote an invertible matrix, let � represent 
a vector and let � represent a vector whose norm is upper 
bounded by constant  �  ,  i .   e.    ‖�‖ ≤ �  .  Then 
‖(� + �)H�‖ ≤ (1 +

�

‖�‖ )‖�
H�‖ and the equality holds if and 

only if � =
�

‖�‖�.

Proof  The proof is provided in [44] by using triangle ine-
quality theorem and Cauchy-Schwarz inequality. 	�  □

By defining:

and by using Lemma 4, we have: 

(41)

max
∀𝜓rj

∈𝛹

{
NI∑

l=1

PIl
||�Nr ,j

T (�̂Il + ∇�Il )
||
2

}
||�Nr ,j

T
�||

2
≤ Pmax

j
− 𝜒rj

||�Nr ,j
T
�||

2

(42)
�
rj
=

2∑

i=1

P
Pi

||�Nr ,j

T
�
Pi

||
2
+

2∑

i=1

P
Si

||�Nr ,j

T
�
Si

||
2
+ �

2
, j = 1,… ,N

r

(43a)

max
∀𝜓Pi

∈𝛹

‖‖‖�
H
�Pi

(�̂Il + ∇�Il )
‖‖‖ =

|||�
H
�Pi

�̂Il

||| + 𝜖l
‖‖‖�

H
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, i = 1, 2,

 As a result, the constraints (39) and (41) can be rewritten as 
the following closed format: 

 where

The closed-form constraints are substituted in the optimi-
zation problem (38). In the next subsection, we use SOCP 
method to obtain the optimal beamforming of our system 
model considering the imperfection of interferers’ CSI.

5.2 � Optimal SINR Solution

In this subsection, we provide a bisection method to find the 
optimal value of � when just imperfect interferers’ CSI are 
known. By applying (47), the optimization problem (38) is 
turned to a feasibility check problem of finding � with the 
constraints (47) for a given value of � . The upper bound on 
� for the case when perfect knowledge of interferers’ CSI is 
available was described in (26). It should be noted that the 
same upper bound applies for the case when only an imper-
fect knowledge of interferers’ CSI is available. Therefore, 
the same bisection approach as is used in Sect.   4.2 can 
be applied for the imperfection case. Drawing to a close, 
we modify the constraints (47) to the SOCP format, so the 
discussed feasibility check problem is solved in an efficient 
way.

Let us use auxiliary positive relay variables �pi and �si , 
i = 1, 2 in such a way that ‖�H�Pi

‖ ≤ �pi
 and ‖�H�Si

‖ ≤ �si
 . 

(46a)
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Also, we use the NI × 1 auxiliary positive real vector vari-
ables �pi

= [�pi,1,… , �pi,NI
]T  and �si

= [�si,1,… , �si,NI
]T 

for i = 1, 2 in such a way that |�H�Pi
�̂Il

| ≤ 𝜚pi,l
 and 

|�H�Si
�̂Il

| ≤ 𝜚si,l
 for l = 1,… ,NI . By using the above men-

tioned auxiliary variables the feasibility check problem for 
a given value of � can be written as:

 All (49c–e) constraints represent SOC regions. We use 
auxiliary vector variables �pi

= [�pi,1
,… ,�pi,NI

]T  and 
�si

= [�si,1
,… ,�si,NI

]T , in the interest of clarity, in which 
�pi,l

= �NI ,l
T�pi

+ �l�pi
 and �si,l

= �NI ,l
T�si

+ �l�si
 for 

i = 1, 2 and l = 1,… ,NI.
By assuming that �H

P1P2
� is a positive real number, the 

constraints (49a) can be turned to the following SOC 
constraint:

Ultimately, by using Lemma 2 and by defining matrices 
�si

= blkdiag(�I ,�Si
) , i = 1, 2 , the constraints (49b) can be 

relaxed to the following SOC format:

Therefore, the feasibility check problem (49) can be effec-
tively solved using the SOCP method.
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6 � Numerical Experiments

In this section, we present different simulation scenarios to 
illustrate the effectiveness of our proposed method in com-
bating interference when the perfect information on CSIs 
of channels between the interferers and other users is not 
available . To do so, all channel coefficients were generated 
as complex Gaussian variables with zero mean and unit vari-
ance. The PU and SU transceivers’ powers were assumed 
to be 0 dBm. For the sake of simplicity, we considered two 
unfriendly interferers that operate in the PUs’ spectrum 
property, with the power of −1 dBm. Also, 10 relays were 
considered to cooperate with both PU and SU transceiv-
ers with a maximum individual power limit of 1 dBm. We 
consider 3 times priority for the primaries quality of service 
with respect to the secondaries, i.e., � = 3 . The achievable 
rate at each receiver is defined by R = log2(1 + SINR) and is 
plotted in Fig. 3 versus the noise power ( �2 ). The minimum 
achievable rate of PU1 and PU2 is shown by RP and plotted 
versus �2 . As can be seen in the figure, RP decreased from 2 
to 0 when noise power increased from −20 to 20 dBm. Also, 
by using the priority design parameter � = 3 , the optimiza-
tion problem forces the network to assign more resources for 
primary transmissions purposes. This limits the achievable 
rate for the secondary transmission as it is shown by allow-
able RS in the figure. As it can be seen in Fig. 3, the optimi-
zation problem makes a restriction on maximum achievable 
rate of 1 when �2 is −20 dBm for RS1

 and RS2
 . However, at 

this level of noise power, RS1
 and RS2

 achieve the rates of 0.4 
and 0.6 dBm, respectively.

The impact of the interferers on the SDR system is illus-
trated in Fig. 4 for different transmission powers of these 

Fig. 3   Achievable rate for 1 Hz bandwidth for primary and secondary 
transceivers for fairness design parameter � = 3
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interferers. The designed parameter � was considered to be 
1, and achievable rate were obtained for different levels of 
interferers’ power, while all other parameters were the same 
as before. Figure 4 shows that, by increasing the interferers’ 
power from −2 dBm to 1 dBm, the rate decreased by 2.5 dB 
when the noise is too weak. However, this performance 
reduction is regulatable if noise variance is high.

We also investigated the effects of cooperation level of 
relays on interference mitigation. In this scenario, we con-
sidered 2 interferers and, the maximum power that each 
relay was assigned for relaying purposes, was varied from 
−2 to 2 dBm while all other parameters were the same as 
before. Figure 5 shows the changes on the average � in a 
Monte-Carlo simulation versus the noise power for different 
maximum limitations on individual relay powers. As it is 
shown in this figure, by increasing the relay power limit, the 
diversity gain of the system increased. For instance, increas-
ing relay power limit from −2 dBm to 2 dBm caused a 3 dB 
increase on SINR when the noise power is −20 dBm.

The previous numerical experiments were based on the 
assumption of perfect CSI availability for interferes. We 
examined our proposed robust method against uncertain-
ties on interferers’ CSI. A scenario where the interferers’ 
CSI are known imperfectly is considered. We assumed the 
imperfection as a percentage of the estimated CSI and var-
ied this percentage from 2% to 10% . The optimal robust � is 
calculated by solving the robust optimization problem (49). 
Figure 6 illustrates that the system will pay the cost by gain-
ing less SINR if the knowledge accuracy is decreased. For 
example, the performance of the system decreased by 1 dB if 
the accuracy of the interferers’ CSI decreases from 2 to 10%.

The �2 value is fixed on 0 dB in Fig. 7 and the achiev-
able rate is plotted versus the changes in the individual relay 

powers for different levels on the interferers CSI imperfec-
tion. As it is mentioned before, the relays provide diversity 
gain to the system and the achievable rates for the transceiv-
ers in the system increase when the relays power increase. 
Besides, more uncertainty on the interferers CSI causes less 
performance for the system. As it can be seen from this fig-
ure, the achievable rate decreases from 1.25 to 1.05 when 
the imperfection on CSI increased between 5 and 15 % for a 
maximum available power of 4 dBm for the relays.

To summarize, in the simulations, we showed the diver-
sity gain on a two-way SDR-network in which the resources 
are fairly distributed among primary and secondary users. 
The effect of interferers in our cooperative model was 

Fig. 4   Achievable rate for 1 Hz bandwidth versus P( ��
�
)2 for different 

interferers power
Fig. 5   Achievable rate for 1 Hz bandwidth versus P( ��

�
)2 for different 

maximum limitation on individual relay powers

Fig. 6   Achievable rate for 1 Hz bandwidth versus P( ��
�
)2 for different 

level of imperfection in knowledge of interferers’ CSI
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investigated. Moreover, the interferers CSI uncertainties 
effect on the system performance was investigated and it 
was shown that our proposed method is robust against such 
uncertainties. It is worth mentioning that the convergence 
of the proposed method depends on the convergence of the 
bisection method which is in order of O( 1

2n
) [51]. While the 

bisection method may be slower than numerical methods, 
but it always converges to the solution.

7 � Conclusion

We propose a model for co-existence different types of sec-
ondary users in an SDR network. A system consists of two 
pairs of PU and SU transceivers, several SU relays and also 
several interferers is considered. The optimum beamform-
ing solution is provided to maximize quality service in PU 
and SU transceivers. Moreover, the optimization problem 
is solved by considering the worst-case scenario when the 
knowledge on the interferers channels is imperfect. The 
simulation results show the performance of our proposed 
method and its robustness against uncertainties in interfer-
ers CSI.
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